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“This much I can say with definiteness - namely, that there is no scientific basis for the
denial of religion - nor is there in my judgement any excuse for a conflict between science
and religion, for their fields are entirely di�erent. Men who know very little of science and

men who know very little of religion do indeed get to quarrelling, and the onlookers
imagine that there is a conflict between science and religion, whereas the conflict is only

between two di�erent species of ignorance.

The first important quarrel of this sort arose over the advancing by Copernicus of his
theory that the earth, instead of being a flat plane and the center of the universe, was
actually only one of a number of little planets, rotating once a day upon its axis and

circling once a year about the sun. Copernicus was a priest - the canon of a cathedral -
and he was primarily a religious rather than a scientific man. He knew that the

foundations of real religion are not laid where scientific discoveries of any kind can disturb
them. He was persecuted, not because he went against the teachings of religion but because

under his theory man was not the center of the universe and this was most displeasing
news to a number of egoists.”

Robert Andrews Millikan (1868–1953) - Nobel laureate in Physics (1923).





ABSTRACT

MÁXIMO, C. E. Collective scattering of light from disordered atomic clouds.
2017. 75p. Thesis (Doctor in Science) - Instituto de Física de São Carlos, Universidade de
São Paulo, São Carlos, 2017.

In this thesis, we investigate the coherent scattering of light by atoms randomly distributed
in space. As described by a model of coupled dipoles, the cooperation in the spontaneous
emission process results from purely optical interactions between the atomic internal
degrees of freedom. In the optically dilute regime, where the atomic medium can be
described by a refractive index, we have shown that light can be deflected with the
application of a gradient of magnetic field. In the dense regime, short-range interactions
appear to suppress Anderson localization of light even in two dimensions, a result which
disassembles the common belief that “all waves are localized in two dimensions”. We also
find that the fringe pattern, resulting from the interference between light scattered by
an atomic cloud and that of its specular image, is robust to both disorder averaging and
saturation. Finally, we demonstrate two-atom bound states in the two-dimensional motion
through the long-range optical coupling. This “optical binding e�ect” with an atom pair
will be important to investigate the all-optical stabilization of large clouds.

Keywords: Radiation-matter interaction. Collective scattering of light by cold atoms.
Anderson localization of light. Optical binding.





RESUMO

MÁXIMO, C. E. Espalhamento coletivo de luz por nuvens atômicas
desordenadas. 2017. 75p. Tese (Doutorado em Ciências) - Instituto de Física de São
Carlos, Universidade de São Paulo, São Carlos, 2017.

Nesta tese, investigamos o espalhamento coerente de luz por átomos distribuídos aleatoria-
mente no espaço. Conforme descrito por um modelo de dipolos acoplados, a cooperação
no processo de emissão espontânea resulta de interações puramente ópticas entre os graus
internos de liberdade dos átomos. No regime opticamente diluído, onde o meio atômico
pode ser descrito por um índice de refração, mostramos que a luz pode ser desviada com a
aplicação de um gradiente de campo magnético. No regime denso, as interações de curto
alcance parecem suprimir a localização de Anderson da luz mesmo em duas dimensões,
resultado que desmonta a crença comum de que “todas as ondas estão localizadas em duas
dimensões”. Também descobrimos que o padrão de franjas, resultante da interferência
entre a luz espalhada por uma nuvem atômica e a de sua imagem especular, é robusto
tanto contra a média em disordem quanto contra saturação. Finalmente, demonstramos
estados ligados de dois átomos no movimento bidimensional através do acoplamento óptico
de longo alcance. Este “optical binding e�ect” com um par de átomos será importante
para investigar a estabilização totalmente óptica de nuvens extensas.

Palavras-chave: Interação radiação-matéria. Espalhamento coletivo de luz por átomos
frios. Localização de Anderson de luz. Optical binding.
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1 INTRODUCTION

The interaction of radiation with matter is one of the most widespread mechanism
in nature. It is present from the single atom spontaneous emission in the visible spectrum
to astrophysical processes, such as x-ray production in black holes. In our daily life,
the electromagnetic radiation reaching our eyes at a given moment has undergone some
manifestation of the scattering phenomenon, whatever its original source. Looking at a
tree in a forest or a cloud in the blue sky, we always see sun rays which were scattered by
a multitude of microscopic particles. Even the light coming from a home-made electric
bulb does not reach us exactly as it left the hot filament. As a consequence, the final
observation strongly depends on the properties of the scattering medium during the light
propagation, which rises up a fundamental out-of-equilibrium problem in physics.

The purpose of this thesis is to explore the collective scattering of light by cold
atomic clouds within di�erent contexts. Although a precise definition of collectivity is still
an open discussion,1 in general, such terminology englobes those phenomena indescribable
by a mere extrapolation of the single particle physics. The Nobel laureate Philip Warren
Anderson (1977) synthesized this concept with three words: “More Is Di�erent”.2 Collective
e�ects will typically depend either on the atomic density, which is a measure of the typical
number of neighbouring atoms, or on the optical thickness, where the size of the scattering
sample is the most relevant parameter. Optical thickness-induced phenomena are often
refereed by the cold atoms community as a cooperative e�ect in light scattering, a definition
we also adopt here.

The discussion on cooperativity in the spontaneous emission of atomic ensembles
started with the seminal work of Dicke (1954).3 When considering a set of identical two-level
atoms interacting with a single light mode, Dicke pointed out that the spontaneous decay
of the many-atom system is dramatically altered by their cooperation. He demonstrated
the existence of a coherent superradiant emission, as he called it, characterized by a lifetime
proportional to the inverse of the number of atoms N . Since the total energy radiated scales
linearly with the number of radiators, the total intensity emitted by the atomic ensemble
ends up being proportional to N2, instead of N , as expected for independent atoms. Dicke’s
publication was first corroborated in the context of nonlinear optics experiments4 before it
inspired a series of new investigations in the 1970s5,6 and 1980s.7,8

The counterpart of superradiance is the subradiance e�ect. It arises when an
antisymmetric state decouples from the environment and simply exhibits no decay. In
realistic situations, there is always a finite coupling with the environment, so it leads to
decay times longer than the one expected for independent atoms. Although subradiance
can be considered as a light storage mechanism in atomic ensembles, it should not be
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confused with radiation trapping9: successive incoherent photon absorption (emission)
events which are described by a particle-like random walk of photons. For samples with a
large number of scatterers, radiation trapping also predicts long photon storage times, as
a consequence of the huge number of scattering events necessary to escape the cloud. Yet
it completely neglects the wave nature of light (incoherent model), whereas subradiance,
like superradiance, is an interference phenomena which only appears in coherent models.10

Due to the weak coupling of subradiant states with the environment, experiments on
subradiance are challenging: There are substantial reports in the context of two11–13 and
many atoms.14,15

When only a single atom gets excited in an atomic cloud, one might intuitively
expect no cooperative e�ect since the exchange of photons will be limited. Surprisingly, this
is not the correct answer as the system may be prepared in a superposition of states where
each atom has a chance to be the excited one. In particular, it was shown that superradiance
can occur even in the single-photon regime (single-photon superradiance),16,17 an e�ect
which is of strong interest for quantum information applications.18–25 This discovery
lead to investigations on collective e�ects in the linear optics regime, stimulating the
development of a Coupled-Dipole Model (CDM).26 CDM equations are typically derived
from quantum formalisms, as it should be when quantum ingredients are under concern
(atoms). Nevertheless, when a low pump intensity is assumed (linear optics regime),
these equations acquire a classical form that can be derived from the standard Maxwell
equations.27 Then, it becomes clear that super- and subradiance are not restricted to the
quantum world, as first introduced by Dicke, and one may focus on linear optics, leaving
apart the exponential grow of more-than-one excitation Hilbert spaces. The whole content
of this thesis relies on results which are extracted from this classical Coupled-Dipole Model,
so we dedicate the second chapter of this thesis to its derivation.

The CDM approach addresses light-mediated long-range coupling between the
atoms and allowed to obtain an accurate description of experiments at a reasonable
theoretical and computational cost. It has been successfully supporting experiments in
the linear optics regime, including the observation of the cooperative radiation pressure
force,28,29 superradiance30 and subradiance15 in large atomic clouds, linewidth broadening
and frequency shifts due to motional e�ects.31 On the theoretical and numerical side,
the amount of results based on several CDM variations are substantial.32–34 One can cite
the study of mechanisms to control subradiance,35 where the classical ballistic motion of
the atoms simulate temperature, and the atomic distribution influence on cooperative
spontaneous emission.36 Interestingly, the latter work demonstrated that the superradiant
Dicke limit is only attained in a regular (periodic) distribution of atoms.

In the context of dense atomic clouds with a spherical symmetry, explicit analytical
results were obtained from the CDM equations by applying fluid approximations. In this

Marcelo Martinelli
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approach, the atomic cloud appears as a smooth and extended dielectric body, whose
refractive index depends on the atomic density. Additionally to sub- and superradiance,
this method was also capable to predict Mie resonances in cold atomic clouds37 and brought
new insights regarding on cooperative decay modes.26 Actually, the first paper of this
thesis (Section 3.1), the Atomic Lighthouse E�ect,38 is mainly based on this continuous
approximation, and we show that the light scattered by an atomic cloud can be deviated by
a gradient of magnetic field. Note that the CDM predicts a highly directional superradiant
emission whose angular intensity distribution is concentrated in the forward direction.10

When a gradient of magnetic field is applied orthogonally to the laser propagation, such
forward lobe deviates maximally in the optically dilute regime, returning to its original
position in the highly cooperative regime. The lighthouse e�ect represents our first Ph.D.
publication, so it served us as an important pedagogical introduction to the community
of collective e�ects in light scattering. An experimental verification of this phenomena is
planned on a cold atom experiment in São Carlos-SP.

The microscopic version of the CDM combines light interference with disordered
atomic distributions, which brings out the possibility of investigating Anderson Localization
for light. In 1958, Anderson demonstrated that electronic waves become exponentially
localized in space39 in the presence of disordered potentials. As a result, the electronic
di�usion completely ceases and the conductor under concern undergoes a transition to an
insulator phase. Yet such transition takes place only in three dimensions (3D), whereas for
one (1D) and two dimensions (2D), the electron is always localized whatever the degree of
disorder.40 The interpretation of localization as a interference-induced phenomena lead
to its observation in classical waves,41 as for example, in electromagnetic waves. Light
has some important advantages with respect to electrons: photons do not interact with
each other during the scattering process in linear optics and the associated experiments
are more easily controlled at room temperature. Indeed, there are references in literature
claiming localization of light measurements in 1D,42 2D43 and mainly in 3D.44–46 In
particular, the reports in 3D are not consensually accepted. Some groups advocated
that the experimental data could be explained by absorption instead localization, and a
controversy has established in the community. In order to give an idea of the current status
of the discussion, note that one of the groups who has claimed localization observation
published a new paper admitting that the results are not unambiguous.47 Actually, this
paper presents a very good summary of the entire controversy, where it becomes clear that
Anderson localization of light in 3D still remains an open question.

The community of localization of light lived a small revolution with a new publica-
tion entitled “Absence of Anderson localization of Light in a random ensemble of point
scatterers”.48 In this work, the authors call the attention on an important peculiarity of
electromagnetic waves: their vectorial nature. Indeed neither the theory of localization
nor previous experimental observations had taken into account polarization e�ects, yet
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this ingredient appears to be responsible for drastic modifications on the light transport
in disordered media. Note that a scalar scattering approximation in 3D is reasonable
only for dilute regimes and creates long-range correlations between the scatterers. On
the contrary, it was expected that Anderson localization of light in 3D could be reached
only in dense samples, as in condensed matter systems and in other wave phenomena.
Surprisingly, short-range terms which are induced by the vectorial nature of light actually
inhibit localization, as demonstrated in48,49 via scaling analysis. This important result
has stimulated us to investigate the role of polarization in 2D, which was supposed to
always present localized states. In our publication,50 included in Section 3.2, we derive
an unprecedented two-dimensional model where scalar and vectorial subsystems coexist
uncoupled. There, the e�ect of near-field terms on 2D localization was explored in details
by comparing vectorial model with a scalar one which is valid for dense regimes. Such a
Ph.D. project contributed with two new pieces of information: 2D localization of light get
suppressed by both near field terms and polarization; spatial-like localization (Anderson)
seems to be independent from time-like localization (Dicke subradiance).

Disordered samples can also bring out the weak version of localization even for
vectorial waves, namely the Coherent Backscattering of light (CBS). This e�ect is under-
stood as the constructive interference between a scattering path, involving two or more
scatterers, and its reciprocal (time-reversed) path.51 Di�erent from strong localization,
which is characterized by a constructive interference within the sample, CBS leads to an
enhanced scattering into the backward direction with respect to the incident laser.52,53

It turns out that, when considering cold atoms scattering light, quantum mechanisms
are know to break the time-reversal symmetry of reciprocal multiple scattering paths,
which makes the CBS e�ect vanish. For instance, in the strong driving regime, the path
information becomes available through the inelastically scattered photons54,55 and the
suitable theoretical treatment of saturation in multiple scattering has not been solved in
its full generality.

An alternative to CBS that can still survives in the nonlinear optics regime was
explored in this doctorate, namely mirror-assisted Coherent Backscattering (mCBS). This
di�erent configuration accounts with a reflective interface introduced behind the atomic
cloud, which induces constructive interference between the radiation of the atom and
that of its image. As shown experimentally and theoretically in one of our papers,56 more
precisely in Section 3.3, mCBS arises through fringes with circular symmetry surrounding
the normal to the mirror. Interestingly, this constructive interference can be also observed
in optically dilute samples, where multiple scattering is too weak to produce observable
signatures. Our work consisted in to understanding theoretically the intensity patterns
measurements in both the linear and saturated regimes (i.e., classical and quantum
regimes). The characterization of the fringes allowed to determine precisely the position
and longitudinal size of the atomic cloud. In the strong field regime, where the atoms are
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saturated, the comparison between theoretical and experimental curves demonstrates that,
in contrast to the standard CBS, inelastic photons fully contribute to the mCBS fringes.

Since the internal dynamics of the atoms is usually much faster than that of
their center-of-mass, for simplicity, in most e�ects previously mentioned it was assumed
motionless particles distributed in vacuum (zero temperature). This regime is achievable
thanks to laser-cooling techniques, very common to cold atoms experiments,57–59 where
Doppler broadening can be strongly reduced and coherent cooperative e�ects could be
proven.15,30 Yet, for longer time scales, the atomic motion couples to the dipole degree of
freedom, and such interplay induces the emergence of two fundamental optical forces: the
radiation pressure force, which accelerates particles in the light propagation direction,60

and the dipole force, which tends to trap them into intensity extrema, as for example
in optical lattices.61 Beyond single-particle physics, these optical forces get modified by
particles cooperation during the scattering of light. For instance, the radiation pressure
force compresses optically thick atomic clouds, as a result of intensity attenuation in the
main scattering direction.62 Also, the gradient force can be cooperatively induced in the
scattering of plane waves using nonlinear self-focusing by many-body matter waves.63

When various microscopic particles scatter light, the superposition of the re-emitted
fields generates radiation pressure force and dipole force between the scatterers. Such
interparticle forces can promote long-range spatial reorganization of the system in regions
of the order of the light wavelength, an e�ect called Optical Binding (OB).64 This e�ect was
foremost investigated with dielectric particles moving in two dimensions within dissipative
fluids.65,66 After these demonstrations, experiments have been mostly realized with pairs
of dielectric microsized-spheres interacting with intense light fields, where the bistability
of the equilibrium interparticle separations was studied,67 and optically restoring forces
could be measured.68 Theoretical approaches have focused on demonstrating one-69 and
two-dimensional (2D) 70,71 stability of spheres arrays numerically. In particular, bounded
dynamical states were proved only above a critical friction ,72 an ingredient shared by all
OB investigations so far.

The last work of this thesis represents the first theoretical attempt to realize
OB with cold atoms (Chapter 4). As such experiments are kept in extremely e�cient
vacuum conditions, it allows for unprecedented studies on optically bounded motion in
the absence of nonradioactive friction. We considered a pair of atoms confined to move in
two-dimensions by counterpropagating lasers, where the angular momentum of the binary
system ends up a conserved quantity. We show that the field strength induces an unstable-
stable dynamical phase transition, which is symmetrical with respect to the resonance. We
also demonstrate that the injection of angular momentum in the two-atom system makes
the optical binding more e�cient. In order to stabilize atomic clouds, magneto-optical
traps (MOT) account with inhomogeneous magnetic fields in addition to the laser cooling.

Marcelo Martinelli
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Our study on OB might give insights in how to stabilize large atomic clouds for longer
times using only light.

This thesis is organized in a format which is based on the papers of the student.
We first present in Chapter 2 the theoretical background which grounds our results, where
a general derivation of the Coupled-Dipole Model is included. The already published
papers can be found in Chapter 3, whereas a paper close to its submission can be read in
a one-column letter format, in Chapter 4. Finally, we draw our general conclusions and
discuss the natural continuation of these studies. All supplementary information regarding
mathematical steps and less straightforward calculations are located separately in each
section of Chapter 3.
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2 COUPLED-DIPOLE MODEL

2.1 Hamiltonian for the radiation-matter interaction

Despite its apparent simplicity, the interaction between the radiation field and a
one valence electron atom is actually a very challenging problem. The electromagnetic
vector potential A depends nontrivially on relative and center-of-mass coordinates of
the atom (r, R) and also couples to the conjugated momentums (p, P).73 In order to
simplify the description, one typically consider that the electromagnetic field does not
vary substantially over the atom, i.e., the wavelength ⁄ of the field is much larger than the
de Broglie wavelength of the atom. Such assumption, known as the dipole approximation,
takes into account only the zero order term of the A multipolar expansion, which depends
only on the center-of-mass of the atom. Under this hypothesis, the light-atom Hamiltonian
reduces to

H = P 2

2M
+ 1

2M
[p ≠ eA (R, t)]2 + V (|r|) + H

field

, (2.1)

where V is the Coulomb interaction between proton and electron, both with charge of
modulus e. The free energy of the field is chosen as H

field

and M stands for the atom
mass.

For non-relativistic center-of-mass motion,74 one can show that Eq.(2.1) is gauge
invariant of

H = H
atom

+ H
field

+ P 2

2M
≠ er · E (R, t) , (2.2)

where E describes the electric field at the atom center-of-mass. The Hamiltonian H
atom

=
P 2/2M +V represents the atom as a closed system, and its analytical diagonalization leads
to the well-known Hydrogen eigenfunctions. When considering the electric field description
instead of the vector potential approach, the terminology “dipole approximation” becomes
clear: the atom is recognized as an eletric dipole er coupled to the light. Interestingly,
such apparently naive picture grounds many celebrated results in literature regarding
atoms-photons interaction,75 and the results presented in this thesis also rely on this
approximation.

As this thesis focuses on many-atoms interacting through light, the total Hamil-
tonian must be constructed by superimposing the interaction of each individual atom
with the electric field. We start by defining the electric dipole moment of the atom j as
D

j

= er
j

and redefining the center-of-mass coordinates as R
j

æ r
j

and P
j

æ p
j

, with
j = 1, 2, . . . , N . Therefore, the relative coordinates of the atoms are hereafter identified as
their internal degrees of freedom, which are encoded in the electric dipole moment D

j

.
The center-of-mass coordinates will be referred to as their external degrees of freedom.
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One pecularity of electromagnetic waves is their vectorial nature and, based on
conservation arguments, they also transfer angular momentum to the atom. In general, it
leads to population of the threefold degenerate magnetic structure of the atom, with the
transitions evolving coupled. In the dilute regime, this description can be approximated
by a two level structure, which is, for example, the relevant regime of our following papers:
the Atomic Lighthouse E�ect,38 the Mirror-Assisted Coherent Backscattering56 and the
Optical Binding. However, a scalar theory is no longer a good approximation for Anderson
Localization of Light50 since it arises in the dense regime of disordered medium. Here we
proceed on deriving first the vectorial model and, when appropriate, the scalar model will
be identified by neglecting the polarization.

Figure 1 – Energy levels in the vector model of scattering. Three degenerate transitions
are allowed.

Source: By the author.

The interaction between atoms and radiation is rigorously described by quantum
mechanics, so let us promote all involved variables to operators: O æ Ô. Based on the
previous paragraph, the level configuration of each atom must respect the polarization
selection rules. As represented in Fig.1, only transitions between a nondegenerate ground
state |g

j

Í (angular momentum ¸ = 0) and a threefold degenerate excited state |e
j,m

Í are
allowed, where m = 0, ±1 indicates the possible projections of the angular momentum
¸ = 1 on the quantization axis. Note that the transition m = 0 is accessed by linearly
polarized light, whereas transitions m = ±1 are pumped by circularly polarized light, all
of them with frequency Ê

a

. Therefore, if the dipole matrix elements d
j,m

= Èg
j

| D̂
j

|e
j,m

Í
are written in the diagonal base of H

atom

, the Hamiltonian (2.2) can be cast in its fully
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quantum form:

Ĥ = 1
2

Nÿ

j=1

A

~Ê
a

‡̂
z,j

+
p̂2

j

M

B

+ ~
ÿ

k,s

Êk

3
â†

k,s

âk,s

+ 1
2

4

+~
Nÿ

j=1

1ÿ

m=≠1

ÿ

k,s

1
â†

k,s

e≠ik·ˆr
j + âk,s

eik·ˆr
j

2 1
gj,m

k,s

‡̂(m)

j

+ gj,mú
k,s

‡̂†(m)

j

2

+~
2

Nÿ

j=1

1ÿ

m=≠1

1
�

m

(r̂
j

) ‡̂(m)

j

eiÊ0t + �ú
m

(r̂
j

) ‡̂†(m)

j

e≠iÊ0t

2
. (2.3)

In the first line of Eq.(2.3) , the diagonal single-atom term H
atom

is now replaced
by the superposition of the following operators

‡̂
z,j

=
1ÿ

m=≠1

|e
j,m

Í Èe
j,m

| ≠ |g
j

Í Èg
j

| , (2.4)

which represents the free energy of each atom. The free field Hamiltonian H
field

become
represented as a sum over the energy of an infinity of uncoupled oscillators, with frequency
Êk = |k| c, which arises from the electric field expansion in terms of creation âk,s

and
annihilation operators â†

k,s

. The atomic transitions are realized by the lowering ‡̂(m)

j

=
|g

j

Í Èe
j,m

| and rising ‡̂†(m)

j

= |e
j,m

Í Èg
j

| operators. Additionally, one can observe that the
atom-field interaction has been subdivided into two contributions: atoms interacting with
a driving field, of Rabi frequency �

m

(r̂
j

), and atoms interacting with an infinity set
of vacuum modes (k, êk,s

). The former pumps transitions m without being a�ected by
individual photon emissions (classical field approximation). The latter interaction has
coupling frequency

gj,m

k,s

= êk,s

· d
j,m

Û
Êk

2~‘
0

V , (2.5)

where the quantities ~, ‘
0

and V are, respectively, the Planck’s constant, the vacuum
permittivity and the quantization volume. The dynamics governed by Hamiltonian (2.3)
cover all results contained in the present thesis, so in the following section, we derive from
it the associated e�ective dynamics of the atoms.

2.2 Atomic cloud dynamics

As discussed in the introduction, cooperativity in coherent spontaneous emission
was first introduced in the quantum context,3 however, many non-trivial cooperative
phenomena arise within the classical theory.26,27 In the present section, we derive a
classical master equation which grounds the results of this thesis: the Coupled-Dipole
Model (CDM).

For low pump intensity, the linear optics regime is implemented on the atoms
commutation relations through the following approximation:

Ë
‡̂†(m)

j

, ‡̂(m

Õ
)

j

Õ

È
= (|e

j,m

Í Èe
j,m

| ≠ |g
j

Í Èg
j

|) ”
j,j

Õ”
m,m

Õ ¥ ≠”
j,j

Õ”
m,m

Õ . (2.6)
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Such assumption neglects multi-excitation in the atomic system by restricting the total
Hilbert space to the single excitation basis |g

1

, . . . , g
N

Í, |e
1,m

, g
2

, . . . , g
N

Í, |g
1

, e
2,m

, . . . , g
N

Í,
. . .,|g

1

, . . . , g
N≠1

, e
N,m

Í. Relation (2.6) rather reduces the complexity of the quantum
problem since it leads to a linear instead of exponential growth with the system size.

Combining hypothesis (2.6) with the commutation relations
Ë
‡̂(m)

j

, ‡̂(m

Õ
)

z,j

Õ

È
= 2‡̂(m)

j

”
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Õ , (2.7)
Ë
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Ë
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, Ĥ (r̂
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j

Ĥ (r̂
l

) , (2.9)

one obtains the following Heisenberg equations of motion:
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dt
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M
d2r̂

j

dt2

= ≠Ò
ˆr

j

Ĥ(r̂). (2.12)

The equations above demonstrate that the dynamics of the vacuum modes of the field are
coupled to internal and external degrees of freedom of the atoms. Since the modes of the
radiation field behave as a reservoir with infinite degrees of freedom, it is convenient to
substitute the formal solution of Eq.(2.10) in Eq.(2.11) and Eq.(2.12), by assuming the
vacuum as the initial condition for the field. Thus, performing the unitary transformations

‡̂(m)

j

æ ‡̂(m)

j

eiÊ0t, âk,s

æ âk,s

eiÊkt, (2.13)

the internal and external dynamics of the atoms can be respectively written in the form
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where we define the relative position coordinate operator between two atoms r̂
jl

© r̂
j

≠ r̂
l

and the detuning � © Ê
0

≠ Ê
a

.

As we are interested in evolution times satisfying t ∫ max (|r
jl

| /c) and t ∫ 1/Ê
0

,
with |r

jl

| /c the photon time-of-flight between any pair of atoms, retardation e�ects can
be neglected by applying the Markov approximation:

‡̂(n)

l

(t ≠ ·) ¥ ‡̂(n)

l

(t) , r̂
jl

(t ≠ ·) ¥ r̂
jl

(t) . (2.16)

Additionally, the terms proportional to eiÊ0(2t≠·) in Eq.(2.14) and Eq.(2.15) oscillates much
faster than those eiÊ0· , so they do not contribute in average to the dynamics (Rotating
Wave Approximation). All these assumptions are very useful to make the many-atom
dynamics tractable and yields the following general equations of motion
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where we define the generalized scattering Kernel

K
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As a consequence of the Markov approximation, the upper bound of the time integral in
Eq.(2.19) was extended to infinity.

In order to calculate the evolution of the operators expected values, let us remind
that we are under the dipole approximation. Therefore, the typical width of the atom
is much smaller than the optical wavelength, which requires an atomic lifetime much
shorter than its recoil time 2M⁄/~. Such condition allows us to replace the position and
momentum operators by classical variables (r̂

j

æ r
j

and p̂
j

æ p
j

). On the dipole side, the
dynamics of the expected values È‡̂(n)

l

Í © —(n)

l

completely determines the internal motion
of the atoms since quantum correlations do not play any role in the linear optics regime
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).76 Thus, the classical equations of motion takes the following
simpler form
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Reminding that the most accessible source of information in cold atom experiments
is the scattered light, which is based on photon absorption, the scattered electric field can
be derived from the expression

Ê
s

(r) =
ÿ

k,s

Û
~Êk
2‘

0

V
êk,s

âk,s

e≠iÊkt+ik·r, (2.22)

which is proportional to the photon annihilation operators.77 With similar procedures
presented so far, it is possible to obtain the total classical electric field in terms of the
generalized kernel as

E (r) = E
0

(r) + ~
2di

Nÿ

j=1

ΩæK (r ≠ r
j

) · —
j

, (2.23)

where E
0

(r) is the incident electric field. Observe that, in the circular polarized basis
(ê±1

= (x̂ ± iŷ) /
Ô

2 and ê
0

= ẑ), we have defined the following mathematical objects:
ËΩæK (r ≠ r
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© K
m,n
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) , (2.24)
Ë
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È

m

© —m

j
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At this point, it is worth emphasizing the importance of two contributions which
have a strong influence on the atomic dynamics. First: the incident field profile E

0

(r),
which induces population, radiation pressure force and dipole force on the atoms, by means
of the Rabi frequency �

m

(r̂
j

). Second: the generalized kernel K
m,n

(r̂
jl

), which depends on
the superposition of all vacuum modes (see Eq.(2.19)) and leads to an e�ective coupling
between the transition m of the atom j with transition n of the atom l. In particular,
the gradient of the modulus of K generates dipole forces between atoms (see Eq.(2.21)),
whereas the gradient of its phase gives rise to the radiation pressure force. Such interatomic
forces are at the heart of our optical binding studies, in Chapter 4. Nevertheless, the optical
force (2.21) is fully neglected in the papers of Chapter 3 (r̈

j

¥ ṙ
j

¥ 0), once the time scale
under study there is much smaller than that of the center-of-mass motion. Finally, one
must also note that, while the dipoles amplitude —(n)

l

respond linearly to the light fields
(see Eq.(2.20)), the coupling with their center-of-mass r

j

introduces a nonlinearity in the
system, which makes of the present problem even less trivial.

In the following, we discuss some examples of explicit e�ective interactions between
atoms, which are obtained by integration over the vacuum modes in di�erent configurations.

2.3 Light-mediated e�ective interaction

The spontaneous emission process naturally occurs in the three-dimensional space,
so the light emitted from an atom has a finite probability to propagate in any direction.
In order to avoid treating an infinite number of propagation directions in space, a typical
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approach for a dense distribution consists in replacing the discrete sum over the k-space
(see Eq.(2.19)) by the 3D integral78

ÿ

k3D

æ V
(2fi)3

⁄
d3k. (2.26)

The result gives rise to the single atom decay rate
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and to the 3D vector kernel
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where we have defined the directional function
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jlÔ
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and the vector di�erence between any two atoms

r
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= r
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sin ◊
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cos Ï
jl

x̂ + r
jl

sin ◊
jl

sin Ï
jl

ŷ + r
jl

cos ◊
jl

ẑ. (2.30)

Solutions (2.27)-(2.28) are not the focus of our work, however, the steps taken toward it
are exactly the same to those adopted for 2D scattering, as exhibited in reference.50

Eq.(2.28) contains a competition between far-field (1/r) and near-field terms (1/r2

and 1/r3), where the density of the atomic cloud determines which ones will dominate.
On the one hand, near-field terms are important in the dense regime, so they should
be accounted when studying Anderson localization of light. On the other hand, several
experiments are operated in the optically dilute regime, where long-range terms dominate
over near-field ones and polarization can be neglected. Actually, the scalar approximation
can be derived considering a simple two-level system that decays in a set of vacuum
modes.26 In the latter scenario, it is much more convenient to work on a simplified
spherically symmetric version of the scattering kernel, namely

K3D

m,n

(r
jl

”= 0) ¥ �eik0r

jl

ik
0

r
jl

”
m,n

, (2.31)

with � = 3�
3D

/2. Eq.(2.31) represents the so-called scalar Green function which leads to
the simpler electric field expression

E (r) = E
0

(r) + ~�
id

Nÿ

j=1

eik0|r≠r
j

|

k
0

|r ≠ r
j

|—j. (2.32)

Equation above has been used with great success to describe cold atom experiments in
the dilute regime15,28,30 and also grounds theoretical e�orts of this thesis.
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Figure 2 – Two-dimensional scattering scheme: the wave number k, close to resonance
k ¥ k

0

= Ê
0

/c, is confined in the plane (x, y). This is possible because the
cavity is tuned away from the resonance. At this limit, s-polarized light (blue
arrow) completely decouples from the p-polarized light (green arrow).

Source: By the author.

A novelty of this thesis relies on the two-dimensional scattering condition

ÿ

k2D

æ V

(2fi)3

⁄
d3k” (◊ ≠ fi/2) , (2.33)

where the accessible vectors k satisfies the parametrization in polar coordinates k =
k (cos „, sin „, 0), with k = |k| and „ œ [0; 2fi]. This situation can be generated, for
example, inside a high finesse cavity, as outlined in Fig.2, when the atomic resonance is
far-detuned from the cavity frequency. Then the probability of finding modes along the
cavity axis is almost zero and the accessible vacuum modes must occupy only the cavity
plane (x, y). The smaller the spacing between mirrors compared to their radius the closer
the experiment become to our model. In the microwave regime, a similar experimental
setup was achieved using micro-cylinders instead of atoms.43 As can be noted in Chapter
3, the 2D condition (2.33) predicts two uncoupled subsystems, with two di�erent single
atom decay channels
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and the 2D scattering kernel
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We have defined here the angle Ï
jl

= arctan (y
jl

/x
jl

) which determines the direction of the
vector di�erence between each atom r

jl

= r
jl

(cos Ï
jl

, sin Ï
jl

). Observe that the decoupling
between transitions does not arise from the application of a Zeeman magnetic field, where
the three excited levels become non-degenerate, but from the geometric constraint imposed
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by the cavity. A detailed derivation of the quantities (2.34) and (2.35) can be found in the
paper of Section 3.2.

In the 2D scattering, the e�ective interactions between the atoms are thus repre-
sented by Hankel functions: H

0

is solution of the radial part of the 2D Helmholtz equation,
known as the scalar Green function in 2D, and couples atoms that occupy the same sub
levels, whereas the di�erent transitions m = ±1 are coupled by the term H

2

. Depending
on the density regime, these functions can also cover di�erent ranges, as can be seen in
Table 1. Additional details and discussions on all topics can be found in the corresponding
papers next Chapter.

Table 1 – Asymptotic Hankel func-
tions expressions.

- H
0

(x) H
2

(x)

x æ Œ (1≠i)e

ix

Ô
x

≠ (1≠i)e

ix

Ô
x

x æ 0 2i ln x

fi

+ cte ≠ 4i

fix

2 + cte

Source: By the author.
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3.1 Atomic Lighthouse E�ect
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We investigate the deflection of light by a cold atomic cloud when the light–matter interaction is locally tuned via
the Zeeman effect using magnetic field gradients. This “lighthouse” effect is strongest in the single-scattering
regime, where deviation of the incident field is largest. For optically dense samples, the deviation is reduced
by collective effects, as the increase in linewidth leads to a decrease in magnetic field efficiency. © 2014 Optical
Society of America

OCIS codes: (020.0020) Atomic and molecular physics; (020.1670) Coherent optical effects; (020.7490)
Zeeman effect; (290.4210) Multiple scattering.
http://dx.doi.org/10.1364/JOSAA.31.002511

1. INTRODUCTION
The interference of light scattered by different particles of an
ensemble is at the origin of a variety of collective phenomena
such as superradiance [1], Bragg scattering, or collective fre-
quency shifts [2–4]. The phenomena can be classified in two
distinct regimes according to whether the scatterers interact
with each other via mediation of the incident light or not.
Bragg scattering, for example, is the result of a far-field inter-
ference of the light waves scattered by an optically dilute,
periodic structure. In this case, even in the absence of com-
munication between the scatterers, the radiated light pattern
provides information on the scattering structure, a fact that is
extensively used, e.g., in crystallography. On the other hand,
optically dense structures lead to multiple scattering and
strong interference in the near-field (i.e., within the structure)
between the light waves scattered from different particles.
One example is the opening of photonic bandgaps in period
structures [5–9].

Cold atomic clouds are particularly attractive experimenta-
tion platforms as powerful techniques not only to shape the
density distribution but also to fine-tune the light–matter in-
teraction over wide ranges. Here, we show that sufficiently
cold atomic clouds exposed to a gradient of the strength of
the light–matter interaction deflect light due to collective scat-
tering in the single-scattering regime. We propose to imple-
ment the required gradient by an inhomogeneous magnetic
field exploiting the Zeeman effect. Because this phenomenon
is reminiscent of an effect studied in nuclear physics called
the “lighthouse effect” [10–13], we call this effect the “atomic
lighthouse effect.”

The nuclear lighthouse effect was used to perform spec-
troscopy and the transformation from time to angular coordi-
nates allowed us to detect timescales difficult to achieve with
present detection schemes. Similar light deviation effects
have been experimentally observed for light passing through
an atomic vapor in slow light and electromagnetically induced
transparency schemes using either magnetically [14,15] or
optically induced gradients [16,17].

We will show in this paper that the atomic lighthouse effect
can be obtained on a two-level scheme and is a result of the
interference of the light radiated by independent atoms.
Similar to Bragg scattering, it is thus fully determined by
the single-photon structure factor of the atomic cloud. How-
ever, light-induced interatomic cooperation dramatically al-
ters the lighthouse effect in the case of optically dense
samples. We prove this via calculations and simulations ac-
counting for the light-induced interactions between the atoms
in the multiple-scattering regime. The alteration can be under-
stood as an increase in the atomic linewidth, due to the atoms’
cooperation, that reduces the Zeeman effect. Hence, the re-
duction of the lighthouse effect provides a direct signature
of cooperativity.

2. COUPLED DIPOLE MODEL
We describe the light deviation by a cloud of atoms with a
model treating all atomic dipoles as being coupled via the in-
cident light. This allows us to account for interferences be-
tween these dipoles in the optically dense regime. Photon
random walk approaches are not sufficient. Furthermore,
all dipoles are exposed to a locally varying atom–light inter-
action inducing an inhomogeneous phase profile of the dipole
excitation across the atomic cloud.

Let us start by considering an ensemble of N two-level
(g and e) atoms, each at a position rj (j ! 1; 2;…N), driven
by a uniform laser beam with wave vector k0 ! k0ẑ. The de-
tuning of the light from the atomic resonance is Δ0 ! ω0 − ωa,
and the Rabi frequency is Ω0 ! dE0∕ℏ, where d is the dipole
matrix element, E0 is the field amplitude, and ℏ is the Planck
constant. The atom–light interaction is locally tuned with a
inhomogeneous magnetic field in the quantization direction
B"rj# ! ẑB"rj# (see Fig. 1).

Let us consider an electronic transition with a structureless
ground state and single excited state Zeeman level. This
system is described by the following Hamiltonian [18] in
the rotating wave approximation:
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eiΔ0t−ik0·rj $ h:c:#

$ ℏ
XN

j!1

X

k

gk"σ̂"j#− â†ke
iΔkt−ik·rj $ h:c#

−

ℏ
2

XN
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Δk ! ωk − ωa is the detuning between the field emitted into
mode k and the atomic transition ωa. gk ! d

!!!!!!!!!!!!!!!!!!!!!
ωk∕ℏε0V ν

p
is

the single-photon Rabi frequency for a photon volume V ν.
Δ"rj# ! μBmjB"rj#∕ℏ describes the (inhomogeneous) Zeeman
effect, σ̂"j#

−

! jgjihejj and σ̂"j#z ! jejihejj − jgjihgjj are the Pauli
matrices describing the de-excitation and the excited state
population of atom j, respectively, whereas âk describes
the photon annihilation in the mode k. Note that the above
model describes scalar light, an approximation valid for
low density of atoms.

Under the Markov approximation and neglecting recoil or
inelastic scattering, in the linear optics regime a scattering
equation for the dipole excitation βj can be derived (see,
e.g., Ref. [2])

dβj
dt

!
"
i"Δ"rj# $ Δ0# −

Γ
2

#
βj −

iΩ0

2
eik0 ·rj

−

Γ
2

X

m≠j

exp"ik0jrj − rmj#
ik0jrj − rmj

βm; (2)

where Γ ! V νg2k0k
2
0∕πc is the transition linewidth, and jβjj2 cor-

responds to the probability for atom j to be excited. Since the
laser Δ0 is equivalent to a magnetic field offset, under the
assumption of a single excited state Zeeman level, we may
set Δ0 ! 0 without loss of generality.

As the lighthouse effect relies on a global phase contrast in
the dipole field rather than on disorder effects, we adopt a
fluid description of the system introducing the local density

ρ"r# and dipole field β"r#. Then, in the steady state regime,
Eq. (2) turns into a Fredholm equation of the second type,

β"r# ! β"1#"r# $
Z

d3r0ρ"r0#K"r; r0#β"r0#; (3)

where we have introduced the single-scattering dipole
excitation,

β"1#"r# !
Ω0

Γ
eik0·r

i$ 2Δ"r#∕Γ
; (4)

and the scattering kernel,

K"r; r0# !
1

2iΔ"r#∕Γ − 1
eik0jr−r0 j

ik0jr − r0j
: (5)

The consequence of a differential Zeeman effect is intuitive
in the single-scattering limit Eq. (4), where the field Δ"r#mod-
ulates spatially the phase (and amplitude) of the dipole field,
thus modifying the direction of superradiant emission of the
cloud. In the multiple-scattering regime, a more detailed study
must be performed in order to understand how the rescatter-
ing of the photons alters this new phase profile (see Section 4).

3. SINGLE-SCATTERING REGIME
For the sake of simplicity, we focus on a constant magnetic
field gradient, which is orthogonal to the laser beam and can-
cels at the cloud’s center: B"r# ! ηx. We found the lighthouse
effect to be strongest is this geometry. Indeed, for a central
detuning Δ"r ! 0# much larger than the one created by the
gradient of the magnetic field bR (R the cloud radius), the re-
sulting gradient of phase is tuned down by a factor
1∕"1$ 4Δ"0#2∕Γ2#, thus reducing the deflection angle.

We describe the cloud’s density distribution by Gaussian
spheres, which presents the analytical advantage of having
a factorizable density in Cartesian coordinates:

ρ"x; y; z# !
N

"2π#3∕2R3 e
−

x2$y2$z2

2R2 : (6)

The far-field radiated electric field is given by

E"k# !
ℏΓ
id

eik0r

r

Z
d3r0ρ"r0#β"r0#e−ik·r0 ; (7)

where, for clarity, we have omitted the time-dependent oscil-
lating term e−ik0ct. The field resulting from single-scattering
E"1# is then calculated by replacing the complete dipole exci-
tation β in Eq. (7) by the single-scattering excitation β"1# [see
Eq. (4)]. For a Gaussian cloud, introducing the normalized gra-
dient α ! 2μBη∕"ℏk0Γ# and the normalized cloud size σ ! k0R,
it reads (see Appendix A)

E"1#"k# ! −

!!!
π
2

r
NE0

jαjσ
eik0r

r
exp

$
1

2α2σ2
$

sin θ
α

−

σ2

2
"1 − cos θ#2

%

× erfc
$

1

jαjσ
!!!
2

p $
sign"α#σ sin θ!!!

2
p

%
; (8)

with α ≠ 0, ϕ ! 0, and 0 ≤ θ ≤ 2π. As can be seen in Fig. 3, this
formula describes very well the scattering process in the

Fig. 1. Scheme of the atomic lighthouse effect. An incident laser
beam labeled by its wave vector, k0, is scattered from a cloud of cold
atoms to which a transverse magnetic field gradient,∇B, is applied. As
a consequence, the light is deviated by an angle θL.
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single-scattering regime, i.e., for low optical thickness
b0 ! 2N∕σ2. Let us remark that the normalized gradient α
scales with the transition linewidth Γ, so different transitions
may produce very different deviations.

The expansion in scattering orders is also investigated nu-
merically, using Gaussian distributions frig for direct simula-
tions of the microscopic problem. Then, the single-scattering
contribution is obtained by considering the single-scattering
dipole excitation β"1#j ! "Ω0∕Γ#∕"i$ 2Δ"rj#∕Γ#, from which
the radiated field is derived. The following scattering order
is obtained as β"2#j !

P
mKjmβ

"1#
m , where the scattering matrix

K has components Kjm ! K"rj ; rm# for j ≠ m and Kjj ! 0.
Each higher scattering order is obtained by applying K on
the previous one.

An illustration of Eq. (8) exhibiting the lighthouse effect is
shown in Fig. 2. It clearly demonstrates how the transverse
phase gradient deflects the incoming light. Furthermore,
Eq. (8) appears to be in excellent agreement with numerical
simulations of the microscopic problem of Eq. (2) realized in a
regime where the cloud is optically thin (b0 ! 0.16). Indeed,
the only difference between the two radiation patterns is an
(apart from some noise) isotropic background present in the
microscopic simulations. This background has its origin in the
atomic disorder, which is naturally absent from our analytical
approach.

The deflection angle θL is obtained by maximizing Eq. (8)
over θ, which leads to

1
α
− σ

!!!
2
π

r exp
h
−

1
2

&
1

jαjσ $ sign"α#σ sin θL
'
2
i

erfc
&

1!!
2

p
&

1
jαjσ $ sign"α#σ sin θL

''

! σ2 tan θL"1 − cos θL#: (9)

Figure 3 compares the calculated deflection angle to micro-
scopic simulations of Eq. (2), confirming the validity of the
above formula. Under the approximation of a small total de-
tuning over the cloud (ασ ≪ 1), we get

θL ! sin−1
 
1 −

!!!!!!!!!!!!!!!!!!!!!!
1$ 4α2σ2

p

2ασ2

!
≈ −α: (10)

In the other limit of large α, note that the deviation angle is
not limited by the diffraction limit from the cloud size. Indeed,
an increasing gradient of the magnetic field means that only a
smaller volume of atoms scatter the light efficiently, thus
reducing the effective size of the macroscopic scatterer
(see Fig. 7).

Yet, as one increases the optical thickness of the cloud (see
Fig. 4), the single-scattering prediction loses its accuracy,
pointing to the fact that the optically dense regime is ruled
by photon rescattering. While an exact solution of the
three-dimensional scattering problem including interference
does not, to the best of our knowledge, exist, it is possible to
probe the dense regime using, for example, a multiple-
scattering expansion [19–22]. As we will see now, the double-
scattering contribution can be evaluated, providing valuable
hints of the dense regime.

4. MULTIPLE-SCATTERING REGIME
An analytical treatment of the multiple-scattering regime in-
volves solving the problem of N fully coupled atom dipoles

Microscopic simulations
Analytics

1 20.50.2

Fig. 2. Radiation pattern of light scattered (jEj2) by an atom cloud
under the influence of a differential Zeeman effect. Incident from the
left, the light is deflected by a transverse magnetic field gradient. The
analytical curve (red dashed) corresponds to Eq. (8), whereas
the microscopic curve (blue solid) is obtained from simulations of
the stationary solution of Eq. (2). The simulations are made for a cloud
of N ! 100 atoms with radius σ ! 35 (b0 ! 0.16) and α ! 1. The mi-
croscopic simulations are averaged over 500 realizations. jEj2 is in
arbitrary unit, the dotted contour lines stand for its level.

Fig. 3. Deflection angle θL as a function of the scaled magnetic field
gradient α. The curves correspond respectively to single- (solid blue)
and double-scattering (dashed red) contributions. The crosses, plus
signs, and squares stand, respectively, for microscopic single-,
double-, and full-scattering solutions. The simulations were realized
for a cloud with radius σ ! 21 (b0 ! 0.5) of N ! 113 atoms, and aver-
aged over 100 realizations.

Fig. 4. Deflection angle θL as a function of the optical thickness b0.
The curves correspond respectively to single- (solid blue) and double-
scattering (dashed red) contributions. The crosses, plus signs, and
squares stand for, respectively, microscopic single-, double-, and
full-scattering solutions. Simulations realized for a cloud of radius
σ ! 21, varying the number of particles N according to b0 !
2N∕σ2, and averaged over 100 realizations. The inset shows the con-
vergence to the single-scattering prediction for vanishing b0. The latter
simulations were realized for a system size σ ! 57, in order to get
sufficient a particle number at low optical thickness.
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[23–25]. Mean-field approaches such as the timed Dicke state
[26] (TDS), or random walk approaches neglecting phase
coherences, obviously cannot capture the modification of
the atomic phase field. We thus resort to a multiple-scattering
expansion, an approach that has proved particularly useful in
the treatment of, e.g., coherent backscattering [20,27–29].

The double-scattering contribution to the field is obtained
in Appendix A as

E"2#"θ# ! NE0

!!!
π

p
e1∕"4α2σ2#$sin θ∕"2α#−σ2"1−cos θ#2∕4

16jαjσ
eik0r

r

× erfc
$

1
2jαjσ

$
sign"α#σ sin θ

2

%

×
b0

cos θ
2

%e−σ2"1$sin θ#2 erfc"−iσ"1$ sin θ##

− e−σ2"1−sin θ#2 erfc"−iσ"1 − sin θ##&: (11)

In Eq. (11), the first line describes the light deviation, while
the second line yields the double-scattering process: the pre-
factor containing the optical thickness is typical for such an
expansion. The validity of this expansion is delimited by the
condition b0 < 1, when single- and double-scattering are the
dominant contributions.

In Fig. 5, the first-, second-, and complete-scattering solu-
tions for the microscopic problem are plotted and compared
to the analytical solution. The single- and double-scattering
contributions are correctly predicted by the theory. Further-
more, the figure shows a reduction in the deflection angle as
the optical thickness increases. Thus, the rescattering of the
light by the atoms tends to erase the dipole phase gradient
imposed by the magnetic field.

We note that the single- and double-scattering fields inter-
fere destructively, since their electric fields have opposite
signs. Thus, a careful treatment of the light field amplitude
rather than the intensity is crucial, as already noted in [22].

As the optical thickness increases beyond unity, the
numerical full-scattering solution, which contains all scatter-
ing orders, deviates from the prediction obtained for double-
scattering. This is confirmed by the analysis performed in
Fig. 4, where the deviation angle appears correctly predicted
by the single-scattering approach for b0 ≪ 1 and by the
double-scattering calculations for b0 ≤ 1. The extremum equa-
tion for the deflection angle θL including double-scattering is
straightforwardly derived from Eq. (11), yet cumbersome, for
which reason it is not presented here.

Features of the deep multiple-scattering regime can be
captured using a modified timed Dicke state: this mean-field
ansatz assumes a perfect synchronization of all atomic dipoles
[26] and, as a consequence, a broadening of the atomic line-
width. For a Gaussian cloud, the collective linewidth is
ΓN ! Γ"1$ b0∕8# [30]. In our case, we also need to account
for an effective reduction in the optical thickness due to the
inhomogeneous detuning imposed by the gradient of the mag-
netic field. The average detuning of the atoms compared to
those on the optical axis being δLH ! ασ, the effective optical
thickness for the cloud is beff ! b0∕"1$ 4δ2LH#.

Replacing the atomic linewidth by the collective one
Γ"1$ beff∕8# in the single-scattering prediction, we predict a
reduction in the lighthouse effect as the optical density in-
creases: the increase in linewidth leads to a decrease in the
normalized gradient α. Simulations of the microscopic prob-
lem confirm that result and show a qualitative agreement with
the prediction of the modified timed Dicke ansatz (see Fig. 6).

5. DISCUSSION AND EXPERIMENTAL
PERSPECTIVES
We investigated the deflection of light by an atomic cloud
under the influence of a differential Zeeman shift and found
that the single-scattering regime yields maximum deflection.
Calculations and simulations for clouds of larger optical den-
sity, which are dominated by multiple scattering, revealed a
reduction in the effect. This observation points to the fact that
the lighthouse deflection is clearly not a cooperative effect in
the sense that it does not result from light-mediated interac-
tion of the atoms. It is rather similar to Bragg scattering, where
the scattering pattern generated by the interference of the
radiated waves provides information about the atomic cloud’s
structure. As soon as the atoms interact through their radia-
tion, the emergence of multiple scattering washes out the
phase gradient imposed externally by the magnetic field.

Our predictions can be experimentally verified, e.g., with a
cloud of spatially confined cold atoms exposed to a uniform
magnetic field gradient. Measurable deflections are expected
when the parameter α is not too small compared to 1. Accord-
ing to the definition of α [below Eq. (7)], for a typical magnetic
field gradient of η ! 100 G∕cm, this requires rather small line-
widths of the atomic transition. A possible system would be a
cloud of ultracold strontium driven on its intercombination
line at λ ! 2π∕k ! 689 nm. The transition linewidth being

Fig. 5. Radiation pattern jEj2 for different scattering orders (see
legend), for the microscopic system. The solid thick and thin lines cor-
respond respectively to the numerical full-scattering solution with and
without the gradient of the magnetic field. Simulations realized for a
cloud ofN ! 225 atoms, σ ! 21 (b0 ! 1), and α ! 0.013, and averaged
over 500 configurations. jEj2 is in arbitrary units, the solid contour
lines stand for its level.

Fig. 6. Deviation angle for optically thick samples. Simulations
realized for a cloud of size σ ! 21, the number of particles being
determined by the optical thickness, and α ! −0.01. The timed Dicke
state (TDS) symbols refer to single-scattering calculations using the
collective linewidth.

2514 J. Opt. Soc. Am. A / Vol. 31, No. 11 / November 2014 Máximo et al.

3.1 Atomic Lighthouse E�ect 37

Marcelo Martinelli
evidently, your lab!



Γ ! "2π#7.6 kHz one could reach α ! 0.8 with the specified
gradient.

In our derivations we assumed a single excited state
Zeeman level. However, if the atomic cloud is trapped in a
magneto-optical trap (MOT) we would rather have a distribu-
tion of atoms in all Zeeman levels. Furthermore, the magnetic
field does not have the geometry of a uniform gradient but of a
quadrupolar field. These problems, can, however, be circum-
vented by suddenly applying a magnetic field offset B0 and
simultaneously detuning the probe light beam to the Zeeman-
shifted resonance. In that way, one spectrally filters out a
single Zeeman state, i.e., the probe light predominantly inter-
acts with atoms occupying a single Zeeman level. This re-
quires B0 ≫ Γ, which is easy to satisfy in the case of a
narrow linewidth Γ.

Typical values for a strontium MOT operated on the narrow
intercombination line are an atom number ofN ! 2 · 107 and a
radial size of R̄ ! 70 μm (or σ ! kR̄≃ 640) [31], giving an op-
tical density of b0 ! 2N∕"kR̄#2 ≃ 100 for the intercombination
line. In practice, however, narrow transitions are generally do-
minated by Doppler broadening. At a temperature of 4 μK, for
example, the Doppler broadening of the intercombination line
is kv̄ ! k

!!!!!!!!!!!!!!!!
kBT∕m

p
! "2π# 28 kHz. Even if the temperature is at

the Doppler limit of the intercombination line, TD !
ℏΓ∕kB ! 365 nK, the Doppler width still is 8.5 kHz.

To prevent blurring of the lighthouse deflection by the ther-
mal atomic motion, it is important that the Doppler shift be
smaller than the Zeeman shift, kv̄ ≪ R̄∂rB. In this case, the
main effect of the thermal motion is to reduce the optical
thickness of the atomic cloud, by a factor corresponding to
the spectral overlap between the natural linewidth and the
Doppler broadened width, bD ! b0Γ∕kv.

Another point ruling the detectability of the lighthouse
deflection is, whether it exceeds the probe beam divergence
angle. Assuming that it is optimally matched to the size of the
cloud, w0 ! R̄ ! 70 μm, we obtain the divergence angle
αdiv ! λ∕πw0 ! 0.18°. Since σ ! 70 μm∕689 nm ≈ 101 and
α ≈ 0.4, the deflection angle predicted by Eq. (9) is θL ! 1.34°,

so that the deviated beam is easily separated from the incident
laser (see Fig. 7).

Even on regular MOTs operating on strong transitions, the
atomic lighthouse effect should be detectable. Considering,
for instance, the broad 1S0 −

1P1 transition in strontium
[Γ ! "2π#32 MHz], we estimate a deflection angle of θL !
0.026°, which is of the same order of magnitude as the diver-
gence angle, which for a MOT radius of typically R̄ ! 3 mm,
would be αdiv ! 0.028°.

The experimental verification of the lighthouse effect
would represent a nice confirmation that our actual under-
standing of how light is cooperatively scattered by ensembles
of particles is correct, as the reduction in the deviation angle
provides a direct measure of the collective atomic linewidth.

APPENDIX A: SINGLE- AND DOUBLE-
SCATTERING STRUCTURE FACTOR
In the far-field limit and at a distance r, the single-scattering
field is given by

E"1#"k# ! −
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eik0r
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The first integral gives exp"−"1 − cos θ#2σ2∕2# that yields
the forward emission of Rayleigh scattering, in a cone of width
∼1∕σ. The second integral produces a exp"−sin2 θ sin2 ϕσ2∕2#,
yet since the problem is symmetric with respect to the "x̂; ẑ#
plane, we restrict ourselves to this plane, taking ϕ ! 0; π.
Finally, the integral over x, that contains the deviation is
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with a ! k0 sin θ and γ ! 1∕αk0, and where the ' signs refer
to the cases ϕ ! 0; π. Both integrals are solved using integral
formula [32]
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Fig. 7. Radiation pattern normalized by the incident intensity
jE∕E0j2 for the microscopic system, with (thick red) and without (thin
blue) the gradient of the magnetic field. The inset allows us to observe
that the lighthouse angle is not diffraction-limited (cone of black
dashed lines; see main text). Note that the strong background radia-
tion is due to the limited number of particles that can be simulated.
The reduced radiated intensity in the presence of the gradient of the
magnetic field is due to the fact that many atoms are driven out of
resonance by it, so their coupling with the light is reduced. Simula-
tions realized for a cloud of N ! 15000 atoms, σ ! 101 (b0 ! 2.94)
and α ! 0.4, and averaged over 10 configurations. jEj2 is in arbitrary
units, the dotted contour lines stand for its level.
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Consequently, we have
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This leads to Eq. (8), since the ' can be replaced by $ by
extending the angle range to interval 0 ≤ θ ≤ 2π.

The double-scattering field is given by the expression
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These integrals can be decoupled for a Gaussian density dis-
tribution, using the following change of variables
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so that ρ"r#ρ"r0# ! ρ"u#ρ"w#, and assuming that the quadratic
terms in u2 and v2 can be neglected in the Zeeman term
(approximation of small frequency shift 2α2σ2 ≪ 1). Then
we obtain
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r

Z
d3uρ"u#

ei
!!
2

p
u

i
!!!
2

p
u
e−iu·"k0$k#∕

!!
2

p

×
Z

d3wρ"w#eiw·"k0−k#∕
!!
2

p

1$ i
!!!
2

p
αw · x̂

: (A5)

Similar to the single-scattering case, the second integral Iw in
Eq. (A5) leads to
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π

p
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N
jαjσ
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−
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4
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%

× erfc
$
1
2

$
1

jαjσ
$ sign"α#σ sin θ

%%
: (A6)

The first integral, Iu, in Eq. (A5) is calculated using spherical
coordinates "u; θu;ϕu#. The integral over ϕu leads to
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2
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$
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; (A7)

where we have introduced the optical thickness b0 ! 2N∕σ2.
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Quasiresonant scattering of light in two dimensions can be described either as a scalar or as a vectorial
electromagnetic wave. Performing a scaling analysis we observe in both cases long lived modes, yet only the
scalar case exhibits Anderson localized modes together with extremely long mode lifetimes. We show that
the localization length of these modes is influenced only by their position, and not their lifetime. Investigating the
reasons for the absence of localization, it appears that both the coupling of several polarizations and the presence
of near-field terms are able to prevent long lifetimes and Anderson localization.
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I. INTRODUCTION

Multiple scattering of waves has been the subject of
intense debates in the context of disorder-induced Anderson
localization [1]. Indeed, since the proposal to use electromag-
netic waves in random media instead of electrons in solids
exploiting the noninteracting properties of photons at low
intensities [2], many experiments and theoretical studies have
been performed. However, despite a decade-long research, the
mere existence of Anderson localization of light [3–5] and its
relation to another long predicted phenomenon, namely Dicke
super- and subradiance [6], are still not clearly understood [7].
The advent of laser-cooled atoms and their use to study both
localization and super- and subradiance motivated the develop-
ment of ab initio models of interference effects in multiple scat-
tering of light [8]. As most experiments are typically performed
in a three-dimensional (3D) setting, models have also been
focused on such 3D configurations. However, both numerical
and fundamental aspects of localization strongly depend on the
dimension of the explored system [9]. For this reason we have
focused our efforts on a two-dimensional (2D) system, where a
precise study of the eigenvalues and eigenmodes of the system
is more efficient than in 3D, because larger “volumes” can
be simulated for a given number of scatterers. One further
advantage is that the reduced dimensionality allows for a
direct comparison of eigenvalues and eigenvectors between
two regimes of scattering, one of a scalar model of light, the
other of a vectorial model of light where the wave polarization
needs to be accounted for. This comparison recently revealed
important differences observed for the eigenvalues of the
relevant effective Hamiltonians [4,5,10].

In this work we investigate resonant scattering in a two-
dimensional setup, i.e., the light scattering and propagation
are confined to two dimensions. This configuration may be
realized, e.g., with a disordered arrangement of scatterers
in microwave cavities [11], in photonic crystals [12], near
surface plasmons, or with laser-cooled atoms located in an
off-resonance optical cavity. In this geometry, the polarization
orthogonal to the plane, called s polarization, cannot couple
through the scatterers to the planar (or p) polarizations, hence

*Corresponding author: bachelard.romain@gmail.com

it is described by a scalar light model. The two p polarizations
of the electromagnetic waves do couple, and this vectorial-like
scattering includes near-field terms (see scheme in Fig. 1).
Rotating the polarization of an incident wave allows us to
switch between the scalar or vectorial regime, between the
presence or the absence of polarization degrees of freedom
and near-field terms, making it an ideal tool to investigate the
role of polarization in localization and subradiance.

In Sec. II we present a detailed derivation of the linear
differential equations that rule the population evolution of
atomic transitions. The spectral properties of these equations
are investigated in Sec. III, where scalar and vector scattering
are compared via scaling analysis. Finally, we present our
conclusions in Sec. IV highlighting uncorrelation between
spatial and temporal localization of light.

II. MODEL

Two-dimensional light scattering was investigated in mi-
crowave cavities, where light with a polarization orthogonal
to the plates approximately obeys the Helmholtz 2D scalar
equation, and Anderson localization was observed [11].
Another possibility to emulate 2D light scattering is a cloud
of cold atoms with no Doppler broadening located inside
an off-resonant optical cavity made by two metallic disks
whose diameter is much larger than their mutual distance.
This system, which is closer to situations previously studied
in 3D, constitutes the toy model system we will explore in this
paper. Let us consider an homogeneous disk-shaped cloud of
N motionless atoms sitting at randomly distributed positions
rj = (xj ,yj ,zj ) with j = 1, . . . ,N , for which nonradiative
interactions are neglected. Instead, only virtual and real
photons couple the atoms within the optical cavity (axis z)
whose resonance frequency is significantly detuned from the
atomic transition ωa . The electric dipole transitions occur
between one nondegenerate ground state |gj ⟩, related to
angular momentum ℓ = 0 and a triply degenerate excited state
|em

j ⟩, where m = 0, ± 1 indicate the projections of the angular
momentum ℓ = 1 over the quantization axis z. We consider
2D scattering restricted to a radial direction in the (x,y) plane
with a surface density of the atomic cloud ρ = N/πR2, where
R is the cloud radius.

1050-2947/2015/92(6)/062702(7) 062702-1 ©2015 American Physical Society
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FIG. 1. (Color online) Two-dimensional scattering scheme: The
radiation of wave number k close to the atomic transition ka =
ωa/c ≈ k, is confined in the (x,y) plane, i.e., it has wave vectors
of the form k = k(cos θ, sin θ,0). Two eigenvectors are shown: a
localized s-polarized mode in the upper right part and a extended
p-polarized mode in the left part.

The interaction of the atoms with the radiation field is given
by the following Hamiltonian:

Ĥ = ~ωa

2

N∑

j=1

σ̂z,j + ~
∑

k,s

ωk

(
â
†
k,s âk,s + 1

2

)

+ ~
N∑

j=1

1∑

m=−1

∑

k,s

(â†
k,se

−ik·rj + âk,se
ik·rj )

×
(
g

j,m
k,s σ̂

(m)
j + g

j,m∗
k,s σ̂

†(m)
j

)
, (1)

with ωa as the atomic transition frequency and σ̂z,j as the
atomic diagonal term, whereas σ̂

(m)
j = |gj ⟩⟨ej,m| and σ̂

†(m)
j =

|ej,m⟩⟨gj | are the lowering and lifting atomic operators. â
†
k,s

and âk,s refer to the creation and annihilation of a photon for
mode k, with frequency ωk. The coupling coefficient reads
g

j,m
k,s = êk,s · dj,m

√
ωk/2~ϵ0V , with V as the quantization

volume and dj,m = ⟨gj |erj |ej,m⟩ as the dipole matrix element
(with e as the electron charge). Thus, the two first terms in (1)
are the free-energy contribution and the last term corresponds
to the interaction with the vacuum modes.

We then use the commutation relations

[
σ̂
†(m)
j ,σ̂

(m′)
j ′

]
≈ −1m′

j ′ δj,j ′δm,m′ , (2a)

[âk,s ,â
†
k′,s ′ ] = δs,s ′δk,k′ , (2b)

[
σ̂

(m)
j ,σ̂

(m′)
z,j ′

]
= 2σ̂

(m′)
j ′ δj,j ′δm,m′ , (2c)

where the approximation in the first of these equations cor-
respond to the linear optics regime |ej,m⟩⟨ej,m| − |gj ⟩⟨gj | ≈
−1m

j (we eliminate the possibility of multiexcitation in the
system), to obtain the Heisenberg equations for the operators:

dσ̂
(m)
j

dt
+ iωa σ̂

(m)
j = −i

∑

k,s

g
j,m∗
k,s (âk,se

ik·rj + â
†
k,se

−ik·rj ),

(3a)

dâk,s

dt
+ iωkâk,s = −i

N∑

j=1

1∑

m=−1

(
g

j,m
k,s σ̂

(m)
j + g

j,m∗
k,s σ̂

†(m)
j

)

× e−ik·rj . (3b)

Equations (3a) and (3b) show a correlated dynamics
between atomic levels and vacuum modes.

The radiation field plays the role of a reservoir for atoms
and is composed of an infinite number of degrees of freedom
k,s, so it is convenient to trace over these. Using the unitary
transformations σ̂

(m)
j → σ̂

(m)
j eiωa t and âk,s → âk,se

iωkt , we
obtain the reduced equation evolution for the atomic open
system

dσ̂
(m)
j

dt
= −

∑

l,n

∑

k,s

g
j,m∗
k,s

∫ t

0
dτ

[
gl,n

k,s σ̂
(n)
l (t − τ )eiωaτ

+ gl,n∗
k,s σ̂

†(n)
l (t − τ )eiωa (2t−τ )]

× (eiωkτ+ik·rj l − c.c.). (4)

We can apply the rotating wave approximation and neglect the
fast oscillating terms proportional to e2iωa t . Assuming that the
photon transit time inside the atomic cloud is much shorter
than the emission decay time, we can perform the Markov
approximation σ̂

(n)
l (t − τ ) ≈ σ̂

(n)
l (t) so the atomic transitions

evolves according to the closed set of equations

dσ̂
(m)
j

dt
= −1

2

1∑

n=−1

N∑

l=1

Km,n(rj l)σ̂
(n)
l , (5)

where the scattering kernel is defined as

Km,n(rj l) ≡ 2
∫ ∞

0
dτeiωaτ

∑

k,s

g
j,m∗
k,s gl,n

k,s(e
−iωkτ+ik·rj l − c.c.),

(6)

with rj l = rj − rl , and where the upper limit in the above
integral has been extrapolated to t → ∞ according to the
Markov approximation. The spontaneous emission processes
are naturally three dimensional and the above scattering kernel
a priori contains all light modes in 3D space, so all transitions
may be coupled. Under the assumption of an effective
two-dimensional scattering of light, we can perform in the
continuous 3D density of modes the following approximation:

∑

k

→ V

(2π )3

∫
d3kδ(θ − π/2), (7)

where θ corresponds to the azimuthal angle in spherical coor-
dinates, and V now refers to the quantization volume delimited
by the cavity. Observe we are treating the radiation field
inside a volume, however the density of modes is practically
parametrized in polar coordinates as k = k(cos φ, sin φ,0).
The usual relation for polarization vectors

∑
s êµ

k,s ê
ν
k,s =

δµ,ν − k̂µk̂ν (µ, ν the Cartesian components) here turns into
∑

s

g
j,m∗
k,s gl,n

k,s

= kc

2~ϵ0V

⎡

⎣dz∗
j,mdz

l,n +
∑

µ,ν ̸=z

dµ∗
j,mdν

l,n(δµ,ν − k̂µk̂ν)

⎤

⎦. (8)

Therefore, the 2D condition (7) decouples the component
dz

j,m of the dipole matrix elements from dx
j,m and dy

j,m. This
phenomena is absent in 3D scattering, where all components
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of dj,m are coupled, whereas at the other end, 1D case exhibits
all components trivially uncoupled.

The single atom decay into two-dimensional vacuum modes
is given by

K2D
m,n(rj l = 0) = dz∗

j,mdz
l,n

∫ ∞

0

ck3dk

(2π )3~ϵ0

∫ 2π

0
dφ

∫ ∞

0
dτeiωaτ (e−iωkτ − eiωkτ )

+
∑

µ,ν ̸=z

dµ∗
j,mdν

l,n

∫ ∞

0

ck3dk

(2π )3~ϵ0

∫ 2π

0
dφ(δµ,ν − k̂µk̂ν)

∫ ∞

0
dτeiωaτ (e−iωkτ − eiωkτ ), (9)

where the index 2D applied on K2D
m,n means the general kernel

particularized to the two-dimensional scattering. The time
integral present in Eq. (9) is solved by using the relation

∫ ∞

0
dτei(ωa±ωk)τ = π

c
δ(k ± ka) ± iP

1
ωa ± ωk

, (10)

where P refers to the Cauchy principal value. This term gives
rise to the Lamb shift, a single atom energy shift which is
due to its interaction with the radiation field. We will here
neglect it, as it simply corresponds to a renormalization of the
energy; remark that we do not neglect the so-called collective
Lamb shift that rises from the interaction between the atoms
via virtual photons, as it is still present in the final scattering
kernel.

Using the relations

dj,m = d

(
i
|m|√

2
,

m√
2
,1 − |m|

)
, (11a)

∫ 2π

0
dφ(δm,n − k̂µk̂ν) = πδm,n, (11b)

where the expression for dj,m in (11b) includes choosing the
quantization axis over z, and plugging (10) into (9), we obtain
the two different decay rates:

,0 = K0,0(rj l = 0) = k3
ad

2

4π~ϵ0
, (12a)

,1 = K±1,±1(rj l = 0) = k3
ad

2

8π~ϵ0
= ,0

2
. (12b)

By looking at (10), one can see only the term k = ka

contributes. Therefore, the uncoupling of dz
j,m from the

other components of dj,m causes an anisotropy on the
spontaneous emission process, since the lifetime of transition
ej,m=0 → gj is twice shorter than ej,m=±1 → gj . These
decay rates will predict the coexistence of two scattering
subsystems with different time scales, which vector na-
ture of light will be crucial to select which subsystem is
active.

Finally, we address the collective term by calculating the
integrals describing the coupling between the atoms via the
radiation field

K2D
m,n(rj l ̸= 0) = dz∗

j,mdz
l,n

∫ ∞

0
dτeiωaτ

∫ ∞

0

ck3dk

(2π )3~ϵ0

∫ 2π

0
dφ(e−iωkτ+ik·rj l − c.c.)

+
∑

µ,ν ̸=z

dµ∗
j,mdν

l,n

∫ ∞

0
dτeiωaτ

∫ ∞

0

ck3dk

(2π )3~ϵ0

∫ 2π

0
dφ(δµ,ν − k̂µk̂ν)(e−iωkτ+ik·rj l − c.c.). (13)

Since the density of modes is nonzero only in the (x,y) plane,
the z component of the atoms positions does not come into
play, so in the relation

k̂µk̂νe
±ik·rj l = − ∂2

∂x
µ
jl∂xν

j l

e±ik·rj l , (14)

where x
µ
jl actually spans only (xjl,yjl). The angular integral

then reads
∫ 2π

0
e±ikxjl cos φ±ikyjl sin φdφ = 2πJ0(krjl), (15)

where J0 denotes the Bessel function of the first kind and of
order 0, and rjl =

√
x2

j l + y2
j l is the Euclidean distance between

each pair of atoms in the plane. Despite the integrands in (13)
diverging in the limit k → ∞, the modulus of the wave vectors
k vary only slightly around k = ka (quasielastic scattering). We

then apply the Wigner and Weisskopf approximation which
approximates powers of k in the integral as ka . Using the
relation
∫ ∞

0
dτeiωaτ

∫ ∞

0
dkJ0(krjl) sin(kcτ ) = π i

2c
H0(karjl), (16)

where Hα is the Hankel function of the first kind and of order α,
we can calculate K2D

m,n(rj l ̸= 0) from the action of the second
order derivative of H0(karjl) with respect to x

µ
jl . Practically,

we get

K2D
0,0(rj l ̸= 0) = ,0H0(karjl), (17a)

K2D
±1,±1(rj l ̸= 0) = ,1H0(karjl), (17b)

K2D
±1,∓1(rj l ̸= 0) = ,1H2(karjl)e±2iϕj l . (17c)
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These coefficients allow us to obtain the following set of
equations for the atomic operators σ̂

(m)
j :

dσ̂
(0)
j

dt
= −,0

2
σ̂

(0)
l − ,0

2

N∑

l=1

H0(krjl)σ̂
(0)
l , (18a)

dσ̂
(±1)
j

dt
= −,1

2
σ̂

(±1)
j − ,1

2

∑

l ̸=j

[
H0(krjl)σ̂

(±1)
l

+ e2iϕj l H2(krjl)σ̂
(∓1)
l

]
, (18b)

where tan ϕj l = (yj − yl)/(xj − xl). In both Eqs. (18a)
and (18b) the atoms are coupled together through the same
sublevel with a kernel term H0(kr) that scales as a 2D
spherical wave eikr/

√
r at large distances. This 1/

√
r scaling

in 2D corresponds to long range coupling so we expect
global coupling (or cooperative effects) to dominate over
nearest neighbor coupling. In the vectorial case, the m = ±1
sublevels are additionally coupled via a H2 term which also
scales as eikr/

√
r at long range. However, with respect to

global versus local interactions, H0 diverges at the origin
only as log(kr), so that the contribution of a small volume
around the particle is finite [

∫ r0

0 log(kr)2πrdr < ∞]. Instead,
the H2 term diverges at the origin as 1/r2, which means
that the interaction between the ±1 sublevels is dominated
by the close neighbors or near-field terms at high densities
[
∫ r0

r−
2πrdr/r2 ∼

r−→0
−2π log(r−)].

Differently from the 3D case where scalar light is only
an approximation for dilute systems, and where all sublevels
are normally coupled, in 2D geometries scalar model holds
for high densities. Yet, controlling the polarization of the
injected light allows us to select either purely scalar or vectorial
properties which make our approach quite versatile. In the end,
two decoupled scattering subsystems appear: one involving
a single sublevel of the excited state (the scalar case), the
other one involving the remaining two sublevels (the vectorial
case). As one can note the scalar and vector kernels are not
decoupled through energy shifts like 3D work in Ref. [5], but
rather by geometrical constraints. The microwave or optical
cavity reshapes the density of electromagnetic modes into two
dimensions.

The scattered field at a point r = (x,y) is calculated by a
superposition of annihilation operators, namely

Ê(r) =
∑

k,s

εkêk,sak,se
−iωkt+ik·r, (19)

where εk =
√

~ωk/2ϵ0V . With similar procedures used up to
here, using (3b), it can be shown to lead to the following
equation:

Ê(r) = ẑ
~,0

2di

N∑

l=1

(
H0(ka|r − rl|) + i

πka|r − rl|

)
σ̂

(0)
l

+ ~,1

2d

N∑

l=1

∑

m=±1

eme−2miϕl H2(ka|r − rl|)σ̂ (m)
l

+ ~,1

2d

N∑

l=1

∑

m=±1

emH0(ka|r − rl|)σ̂ (−m)
l , (20)

FIG. 2. (Color online) Inverse participation ratio of the scattering
modes in the complex plane of the eigenvalues (γn,ωn) for scalar light
(a) without and (c) with near-field terms, in units of ,0, and vectorial
light (b) without and (d) with near-field terms, in units of ,1, (a) and
(d) being the physical cases. Simulations realized for a homogeneous
disk cloud of N = 5000 particles with a homogeneous ρ/k2 = 1
density.

with tan ϕl = (y − yl)/(x − xl) and e± = (x̂ ± iŷ)/
√

2. The
m = 0 sublevel is coupled only to light with polarization along
z, whereas the m = ±1 sublevels are coupled together through
p polarizations.

III. SPECTRAL ANALYSIS OF THE LINEAR EQUATIONS

We now turn our attention to the spectral properties of
the system. The scattering modes are the eigenmodes 2(n)

of the linear equations (18a) and (18b), where n labels
the eigenmodes. Their lifetime 1/γn and energy ωn are
given by the real and imaginary part of the associated
eigenvalues, respectively. Defining ψ

(n)
j = (2(n))j , the modes

can also be characterized by their inverse participation ratio
(IPR) (

∑
j |ψ (n)

j |4)/(
∑

j |ψ (n)
j |2)2 that quantifies the (inverse)

number of atoms substantially involved in the scattering mode.
In the vectorial model we renormalize the IPR to remain 1/2
for pairs.

In the scalar case the eigenvalue distribution shown in
Fig. 2(a) exhibits strongly subradiant modes, which we define
as modes with very long lifetimes (γn ≪ ,0). The distribution
can be used to look for a single parameter scaling, by
computing a spectral overlap function conveniently defined
as g = ⟨1/γn⟩−1/⟨ωn − ωn−1⟩, where the modes n are ordered
by increasing energy. In line with the 3D results, we observe
a monotonic decrease of g with the system size for scalar
light [see Fig. 3(a)]. Consequently, the scaling function β =
∂ ln g/∂ ln(kR) is clearly negative for all values of g [see
Fig. 3(b)], as expected for Anderson localization in 2D.
We note that this function g is only one among several
possibilities of defining a spectral overlap and has not been
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FIG. 3. (Color online) (a) Thouless number g as a function of the
dimensionless system size kR, for density ρ/k2 = 0.3 (b) scaling
function β. Longest mode lifetimes for different number of particles
(c) as a function of the optical thickness b0 and for all four scattering
models and (d) as a function of the dimensionless parameter N2/3/kR

for scalar light. The circles are for scalar light, the squares for vectorial
light, the stars for scalar light with near field, and the plus for vectorial
light without near field. The black line in (c) stands for the ∼1/b2

0
curve of the radiation trapping lifetime. In (c) and (d) blue, brown,
and magenta curves correspond, respectively, to simulations with
N = 1000, 2000, and 4000 particles. The inset in (d) shows ,min as
a function of atomic density, indicating that density is not the best
scaling function for ,min, even in the high density limit.

shown to be unequivocally related to transport properties of
electromagnetic radiation.

The dimensionless scaling parameter g is defined in the
scaling theory [13] as the ratio between the Heisenberg time
and the Thouless time. The former corresponds to the time
associated with the mean spacing between the energy levels,
i.e., ~/⟨En − En−1⟩, which in our case reads 1/⟨ωn − ωn−1⟩.
The latter corresponds to the time necessary for a photon
to escape from the sample, and in our open system with
eigenmodes of lifetime 1/γn, we define it as ⟨1/γn⟩. Following
this interpretation, the localization regime is characterized
by a Thouless (diffusion) time that becomes larger than the
Heisenberg one.

In the vectorial case exhibited in Fig. 2(d) we observe a
dramatically different eigenvalue distribution. Indeed, even
though long-lived modes (γn ≪ ,0) exist, they are limited
to values larger by several orders of magnitude compared
to the scalar case. The corresponding spectral overlap also
shows a distinct behavior, with g almost independent of the
system size kR [see Fig. 3(a)], yielding a scaling function
β close to zero, albeit slightly negative [see Fig. 3(b)]. This
behavior of the scaling function β might make this vectorial
case very interesting to study fine corrections of the atom-atom
interactions as it seems to be close to the critical regime.

The above discussion is consistent with the conclusions
drawn from the study of eigenvalues in 3D [4,10]. With the aim

to pin down the essential ingredient of the difference between
the scalar and vectorial model, we artificially introduced or
removed short range terms in the two configurations. More
specifically, we removed the near-field coupling from vectorial
scattering by substituting H2(kr) by H2(kr) + 4i/π (kr)2, thus
suppressing the near fields. The corresponding eigenvalue
distribution is shown in Fig. 2(b). Despite the fact that the ±1
sublevels remain coupled, the eigenvalue distribution of the
vectorial case without near-field terms closely resembles that
of the scalar case, even though the smallest values of γn do not
reach the lowest limits obtained in the scalar case. Conversely,
if we add a near-field term, which we choose as the one present
in vectorial scattering −4i/π (kr)2, to the scalar kernel H0(kr),
the long lived modes of the purely scalar case disappear [see
Fig. 2(c)]. The scaling analysis, as well as a thorough analysis
of the spatial extension of the modes, confirm that Anderson
localization is absent from these altered interactions.

Focusing on lifetimes, the study of the longest of them ,min
first reveals that for low densities (ρ < 0.3), long lifetimes
are caused by the radiation trapping ∼1/b2

0 [14], with b0 the
cloud optical depth [15] [see Fig. 3(c)]. However, for scalar
light, the appearance of the localized modes for ρ/k2 > 0.3
comes along with lifetimes much larger than those predicted
by radiation trapping, see Fig. 3(c). These lifetimes are not
simply a function of the density ρ/k2 but appear to scale as
N2/3/kR and to decay exponentially fast [see Fig. 3(d)]. This
result is clearly beyond the standard Anderson localization,
where quantities scale as N/R2, or cooperative effects where
it scales as N/R, and calls for new approaches. Finally, while
scalar light with near fields exhibits lifetimes that always decay
as 1/b2

0 [it is almost with the radiation trapping black curve
in Fig. 3(c)], both vectorial light with and without near field
exhibit lifetimes longer than that of radiation trapping: These
come from atom pairs instead of localized modes, as reveals
the analysis of the IPR and of the spatial profiles.

These results suggest that both the presence of near-field
interaction terms [4] and coupling of different sublevels can
break down long lifetimes and localization. We also found that
removing the anisotropy present in vectorial scattering [e±2iϕj l

in Eq. (18b)] does not restore localized modes.
Our 2D study, apart from the investigation of subradiance

and localization in lower dimensions, allows for a more
efficient numerical study of the eigenvectors of the dipole-
dipole coupling. One aspect of the eigenvector analysis is
already seen in Fig. 2, where the IPR of the eigenmodes
allows, for instance, a clear identification of atomic pairs
(red circles in Fig. 2 corresponding to an IPR close to 0.5,
indicating atom pairs). In addition, the 2D configuration allows
for an easy systematic study of the shapes of the eigenvectors:
two typical eigenmodes are shown in Fig. 1. The localized
mode is spatially well confined [inset in Fig. 4(a)] and has
a clear exponential shape over several orders of magnitude
[Fig. 4(a)]. Vectorial eigenvectors, on the other hand, are
extended over almost the whole system size [inset in Fig. 4(b)],
with no indication for an exponential decrease [Fig. 4(b)].
This observation is again in line with previous conclusions in
3D [4,10]. The scalar light with near fields and vectorial light
without near fields do not exhibit any exponentially localized
modes, but rather extended modes, as can be observed in Fig. 5.
These scatterings, as well as the vectorial light with near fields,
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FIG. 4. (Color online) Spatial profile of the most subradiant
nonpair mode for (a) scalar light (exponentially localized mode) and
(b) vectorial light (delocalized mode), as a function of the distance
to its center of mass rc.m.. The 2D profile is exhibited in the inset.
(c) Inverse lifetime versus localization length of the modes for scalar
light; the localization length ξ is obtained by exponential fit of the
spatial profile of the mode [(a) for an example], so it is meaningful
only for localized modes, within the dashed-bordered box. More
specifically, the strongly subradiant modes lying outside of the box are
extended, and so are the superradiant (ξ typically exceeds the system
size for these, sign of a full delocalization). (d) Localization length
for scalar light as a function of the normalized density, for different
scatterer number. The “theory” line refers to the theoretical prediction
kξ = (k2/4ρ) exp(πk2/8ρ). (a) and (b) were realized for N = 5000
and ρ/k2 = 1, so kR ≈ 40; (c) is for N = 5000 and ρ/k2 = 10, so
kR ≈ 12.6, as marked by the dash-dotted line.

may however present features of hybrid states where localized
and extended subradiant features combine [16].

The localized nature of the strongly subradiant modes is
thus confirmed by the analysis of their spatial profile. Further-

FIG. 5. (Color online) Spatial profile of the most subradiant
nonpair mode for (a) scalar light with near fields and (b) vectorial
light without near fields. Simulations realized for an homogeneous
disk cloud of N = 5000 particles with an homogeneous ρ/k2 = 1
density.

more, as long as the mode does not considerably extend over
the edge of the atomic cloud, its localization length and lifetime
are uncorrelated [uniform filling of the box in Fig. 4(c) with
modes]. There is however a correlation between the position
of the mode (indicated by the color code, where blue points
mark modes at the center of the system) and its localization
length. Some modes even mix to surface (whispering gallery)
modes that have a much larger spatial extend. Yet there is no
correlation between the position of the mode (at the center
or near the edge of the cloud) and its lifetime. The absence
of correlation between the lifetime of the modes and their
localization length calls for a differentiation between spatial
and temporal localization. Although all spatially localized
modes are subradiant, the shortest localization length may
not be associated with the longest lifetimes. This corroborates
studies on photon escape rates that failed to observe the
localization phase transition [7], and is also highlighted by
the fact that spatial localization is affected by boundary effects
while temporal localization, surprisingly, does not seem to
be. Finally, as can be seen in Fig. 4(d), for densities above
ρ/k2 ∼ 0.05 the localization length no longer depends on the
system size, but only on the spatial density. These curves are
not in agreement with the prediction of localization length from
the perturbative approach in the weak disordered regime [17].

We have also verified [see Fig. 3(a)] that the corresponding
spectral overlap g and the scaling function β for the altered
interactions are qualitatively similar to the one of the purely
vectorial case, i.e., they deviate only slightly from zero.
Similarly, inspection of the eigenvalues did not reveal any
spatially localized mode. Together with the above results
on lifetimes, this observation suggests that extremely long
lifetimes of modes, well beyond radiation trapping ones,
come along with spatial localization, i.e., subradiance may be
a condition necessary to localization.

IV. CONCLUSIONS

In conclusion, we explored 2D scattering by point scatterers
in a scalar and a vectorial limit. Even though our eigenvalue
analysis is consistent with previous results and interpretations
of localization, our procedure of artificially introducing or
removing near-field terms combined with a spatial analysis
of the eigenfunctions support that very long lifetimes come
along with Anderson localization, but both near-field terms
and the coupling of polarizations may prevent their emergence.
Furthermore, we reported an absence of correlations between
lifetime and localization length of localized modes, pointing
at the difference between spatial and temporal localization. An
important task for the future will be to relate both the 2D and
3D studies to transport properties of electromagnetic waves
and to compute observables that can be tested in experiments.
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Coherent backscattering is a coherence effect in the propagation of waves through disordered media involving
two or more scattering events. Here we report on the observation of coherent backscattering from individual
atoms and their mirror images. This system displays two important advantages: First, the effect can be observed
at low optical densities, which allows us to work in very dilute clouds or far from resonance. Second, due to the
fact that the radiation of an atom interferes constructively with that of its own image, the phenomenon is much
more robust to dephasing induced by strong saturation. In particular, the contribution of inelastically scattered
photons to the interference process is demonstrated.

DOI: 10.1103/PhysRevA.94.053806

I. INTRODUCTION

Light propagating in an optically thick sample is subject
to multiple scattering. Although part of the propagation can
be described by a diffusion equation neglecting interferences,
wave effects can alter the distribution of scattered light. In
particular, disorder in the sample may lead to an enhanced
scattering into the backward direction. The effect is known as
coherent backscattering (CBS) in mesoscopic physics, and has
been studied extensively with classical scatterers [1–7]. The
advent of laser-cooling techniques allowed us to manipulate
and control atomic gases, thus enabling their use as resonant
and quantum scatterers. This triggered the study of coherent
multiple scattering in a regime where the quantum internal
structure, the wave-particle duality, and quantum statistical
aspects play a role [8–12].

CBS is understood as resulting from the constructive
interference between a scattering path involving two or
more scatterers and the reciprocal (time-reversed) path (see
Ref. [13], and paths (i) and (ii) in Fig. 1). The interference
of reciprocal paths is actually robust when summed up over
a large disordered sample, which was one of the surprising
features in the first observation of CBS in the 1980s [1–3].
More specifically, some paths add up incoherently and result
in a background radiation, whereas reciprocal paths lead to
an enhanced intensity in the backward direction. However, the
quantum nature of the atoms leads to deviations in the behavior
of CBS as compared to classical scatterers. For example,
the presence of a Zeeman structure can break the symmetry
between the two reverse paths and reduces the contrast between
the enhanced peak of radiation and the background [8,14]. The
time-reversal symmetry of the reciprocal multiple scattering
paths is also broken in the strong driving regime, as a which-
path information becomes available through the inelastically
scattered photons [9,12,15]. Such saturation-induced loss of
coherence in CBS was reported with a cold strontium gas

*philippe.courteille@ifsc.usp.br

[11] and a cold rubidium gas [12,15]. Unfortunately, the
theoretical treatment of saturation in multiple scattering is
very challenging [13,16–23] and has not been solved in full
generality.

Interestingly in a different geometrical configuration coher-
ence effects on the backscattered light can also be observed in
optically thin samples, where multiple scattering is too weak
to produce observable signatures. Indeed the introduction
of a reflective interface—a dielectric mirror for example—
allows for the radiation of the image scatterer to interfere
constructively with that of the original scatterer, eventually
resulting in a coherent backscattering process [24]. This single
scattering regime here involves four processes for each atom
(depicted in Fig. 1), accounting for the real atom and its mirror
image, as well as the laser and its image. Let us call k0 the
incident wave vector, k the scattered wave vector, and ẑ the
normal to the mirror. For a single atom, all four processes
sum up coherently, and the resulting scattered light pattern
presents full interference contrast. When the radiation of all
atoms is disorder averaged, though, all interference fringes
disappear, except at wave vectors k such that k0 · ẑ = −k · ẑ,
because at these specific directions processes (i) and (ii) have
the same optical path for all atoms in the cloud. The resulting
interference fringes present a circular symmetry around the
mirror’s normal direction, with a number of maxima depending
on the spatial extension of the atomic cloud. This effect, which
will henceforth be referred to as mirror-assisted coherent
backscattering (m-CBS), has been observed for classical
scattering media [25].

In this work we report on the experimental observation of m-
CBS from a laser-cooled gas of strontium atoms in the presence
of a dielectric mirror. A series of circular fringes predicted
by the theory are experimentally observed and quantitatively
analyzed. The period and envelope of the interference fringes
allow us, respectively, to precisely determine the position and
longitudinal size of the atomic cloud. We show that in the
strong field regime, where the atoms are fully saturated, the
comparison between theory and experimental results allows
us to show that, in contrast to CBS, inelastic photons fully
contribute to m-CBS.

2469-9926/2016/94(5)/053806(7) 053806-1 ©2016 American Physical Society
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FIG. 1. Four processes contributing to m-CBS. In the low
intensity limit, reciprocal paths (i) and (ii) contribute to the m-CBS
fringes, whereas paths (iii) and (iv) yield a smooth background
intensity.

II. EXPERIMENTAL SETUP

We prepare our atomic sample in a typical strontium
apparatus, which we briefly describe in the following. A
collimated atomic beam emerges from an array of microtubes
located at the output of an oven heated to 550 ◦C. The atomic
beam is then decelerated in a 28-cm-long Zeeman slower in
spin-flip configuration by a counterpropagating laser beam of
power ∼40 mW tuned 500 MHz to the red of the 461 nm
resonance. The Zeeman slower beam has a 1/e2 radius of
4 mm at the entrance of the experimental apparatus, being
focused onto the oven output after propagation through the
whole system (about 90 cm long). The cooled strontium beam
is captured in the science chamber by a magneto-optical
trap (MOT) generated by three pairs of counterpropagating
collimated 461 nm laser beams and a quadrupole magnetic
field; the latter is produced by a pair of coils in anti-Helmholtz
configuration (axial magnetic gradient |∇B| = 70 G/cm).
Each laser beam has a 1/e2 radius of 5 mm and is detuned
by −40 MHz from resonance. A repumping laser addressing
the 497 nm 3P2 → 3D2 transition is used to recycle atoms that
have decayed to the metastable state 3P2. In this way we are able
to generate cold gases with ∼108 88Sr atoms at a temperature
below 10 mK after a 2s loading time. Resonant absorption
imaging reveals an approximate Gaussian density profile with
a 1/

√
e radius of 0.9(1) mm.

The setup for the m-CBS experiment is sketched in
Fig. 2. The scattering medium is a cold gas of 88Sr
atoms in its ground state 1S0, and the transition 1S0 →
1P1 [at λ = 2π/k = 461 nm with a linewidth of # =
(2π )30.5 MHz] is used for the resonant scattering. The
461 probe laser beam (the m-CBS beam) has a waist of
1.5 mm and linear polarization. It first passes through a 50-50
nonpolarizing wedged beamsplitter before reaching the atoms.
A combination of two lenses with focal distances f = 15
cm and separated by a distance of 2f = 30 cm creates a
virtual image of a real mirror, placed at a distance d after
the last lens, at a distance 2f − d before the first lens. This
configuration has been used to study Talbot physics and even
allows negative distances to be realized [26,27]. The m-CBS
beam is reflected with an angle θ0 ∼ 1◦ compared to the
mirror’s normal direction. Having crossed again the atomic
cloud, the beam is partially reflected by the beamsplitter onto
a 200 mm lens. A CCD camera placed at the focal plane of the
lens allows for the detection of the angular radiation pattern.
To avoid the direction of the reflected m-CBS beam, which
would saturate its pixels, the CCD camera only captures part
of the circular pattern. An experimental measurement of such
fluorescence pattern is shown in the top right area of Fig. 2.

After turning off the MOT cooling beams, we wait 200 µs
and shine the m-CBS beam pulse of 200 µs duration onto the

FIG. 2. Experimental setup: A laser beam passes through a
beamsplitter (BS) before illuminating the atomic cloud a first time. It
is then reflected on a virtual mirror (VM), created by two lenses and
a physical mirror, at a small angle of θ0 ∼ 1◦ with the normal of the
mirror. After being reflected, it crosses the cloud again, before being
sent by the beamsplitter, to a CCD camera detecting the angular
distribution of the light in the focal plane of a lens. The top right
picture shows an interference pattern obtained in our experimental
setup, exhibiting the predicted circular symmetry. The inset is an
azimuthal angular average of the picture.

atomic cloud, capturing an image in the presence of atoms.
After 1 s we record a background image in the absence
of atoms. We run this sequence ≈ 200 times for the same
parameters to obtain a disorder-averaged final image as shown
in Fig. 2.

III. LINEAR REGIME

The interference phenomenon of m-CBS is best understood
in the linear regime, i.e., for a saturation parameter s =
2%2

0/(&2 + #2/4) ≪ 1, where %0 is the Rabi frequency due to
the incident laser and & is the laser detuning from the atomic
resonance. In this limit the atoms behave as classical linear
scatterers and the total fluorescence is a linear combination
of four processes depicted in Fig. 1. The reciprocity of
processes (i) and (ii) requires us to add up the corresponding
field amplitudes for each atom, whereas paths (iii) and (iv)
have no reciprocal counterpart, and so the corresponding
scattering intensities contribute, after disorder averaging, to an
incoherent background. In this low saturation limit (s ≪ 1),
the intensity radiated by a Gaussian cloud of atoms and its
mirror image reads (see Appendix B)

I (θ ) ∝ s
{
1 + 1

2e−2(θ0kσz)2(θ−θ0)2
cos[2θ0kh(θ − θ0)]

}
, (1)

where h is the distance between the virtual mirror and the
center of the atomic cloud and σz is the longitudinal cloud
radius at 1/

√
e. To obtain Eq. (1), a small angle approximation

has been applied (θ0 ≪ 1 and |θ − θ0| ≪ θ0). The second term
in the bracket on the right-hand side of Eq. (1) corresponds
to the single scattering interference of m-CBS, surviving
averaging over the atomic spatial Gaussian distribution within
a Gaussian angular envelope of half-width at 1/e2 given
by ( = 1/θ0kσz. Since the fringes have an angular period
)f = π/θ0kh, one typically expects to detect a number
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FIG. 3. Mirror position expected from m-CBS theory (i.e., hthr =
π/kθ0)f ) as a function of the experimental mirror position. This
measurement allowed us to detect an initial experimental misalign-
ment of x0 = 2.1(1) mm, which corresponds to the shifted minimum
of the fit hthr = |Ah + x0| (dashed line); we obtained A = 0.988(12).
The error bars associated with the experimental data are smaller than
the symbol size.

∼h/πσz of fringes on the scattered light. Together, both
terms yield an ideal contrast of m-CBS of C = 1, defined
as C = (Imax − Imin)/Ibackground. The fringes’ period depend
on the inverse of the distance of the cloud to the mirror
()f = π/θ0kh), so the position of the mirror can in principle
be evaluated from the fringes’ pattern. To confirm this effect,
the (virtual) mirror position h was varied for about 6 cm around
the center of the cloud, and for each position an interference
pattern similar to that of Fig. 2 was extracted. Note that we are
able to place the virtual mirror at negative distances (i.e., the
light first passes through the virtual mirror and then the atoms),
and still have the m-CBS effect. Figure 3 shows the measured
dependence of the fringes’ period )f (or, equivalently, of the
deduced mirror distance π/kθ0)f ) as a function of h. The
excellent linear behavior not only shows a good agreement
with theory, but also indicates that the initial experimental
positioning was misaligned by 2.1(1) mm.

IV. SATURATED REGIME

In the saturated regime, the atomic dipole moment has a
nonlinear response to the applied radiation field. It is then
no longer possible to add up linearly the amplitudes of four
independent processes. In order to better understand how the
contrast of m-CBS depends on the saturation parameter, we
turn to an alternative picture, valid for all saturation, including
the low and large saturation limits. In this new picture, we first
consider the total fluorescence of a single atom and its mirror
image. This fluorescence is a coherent superposition of the
light scattered by the atom and its mirror image, which have
the same amplitude and are strongly correlated. This leads,
for a single atom, to an undamped far field fringe pattern with
full contrast. Furthermore, different atoms located at different
distances from the virtual mirror are exposed to different local
amplitudes of the standing wave created by the superposition
of the incoming and reflected m-CBS beams [see Eq. (B1)
of Appendix B]. For a mirror of perfect reflectivity, and
neglecting the attenuation of the m-CBS beam after its passage
through the atomic cloud, both the incoming and reflected m-
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FIG. 4. Single-atom [colored (shaded) areas] and cloud-averaged
[red (gray) thick line] fringe patterns in the linear (a) and saturated (b)
regime. The reason for the periodic modulation of the fringes’ maxima
for different atoms is explained in the main text; the black dashed line
denotes the maximum amplitude of individual atomic fluorescence
fringes, as a function of the maxima position. The maxima of all
single-atom curves are identified by a black dot. In the saturated
regime, the saturation of the atoms reduces the amplitude modulation,
and the contrast of the averaged fringes decreases.

CBS beams have equal intensity, and the standing wave created
has perfect nodes and antinodes. The absolute amplitude of
the far field fluorescence fringes of a single atom is thus
a function of the local light intensity at its position, which
presents the nonhomogeneous distribution of the standing
wave. Atoms at the maxima of the standing wave will thus have
their far field fluorescence pattern with maximum amplitude
(see blue line in Fig. 4), compared to other atoms within the
atomic cloud (e.g., yellow or green lines in Fig. 4). Within the
previous description based on four different processes, valid
at low s, these atoms at the maxima of the standing wave are
those that have all four processes summed up constructively,
with a maximum of the scattered intensity at θ = θ0. On
the other hand, for different atomic positions in the standing
wave, while the reciprocal processes (i) and (ii) have always
constructive interference at θ = θ0, the angular position of
the maximum of the fluorescence for processes (iii) and (iv)
varies and do not always cooperate to produce a maximum
intensity at θ = θ0. Hence, adding up coherently all four
amplitudes for a single atom creates angular fringes which are
a function of the atomic position, with different amplitudes,
and maxima at different angles. An illustration of some of these
single-atom angular fluorescence patterns are shown in Fig. 4
by the colored, filled curves. The black dashed curve shows
the dependence of the amplitude of all possible single-atom
fluorescence fringes as a function of the position of the maxima
of the fringes. Considering an extended atomic sample leads to
the superposition of shifted fringes with different amplitudes.
Then, averaging over various disorder configurations leads to
a fluorescence pattern with contrasted fringes around θ = θ0
(shown by the thick red curve).

As expected, for low saturation (s ≪ 1) this interpretation
yields the same contrast C = 1 as the interpretation based on
reciprocal paths and an incoherent background. However this
alternative interpretation of m-CBS allows us to go beyond
the linear response theory and obtain quantitative predictions
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for the saturated m-CBS regime, which is illustrated by
Figs. 4(a) and 4(b). For s = 20, the position of the maxima
of each individual atomic fringe is the same as for s ≪ 1.
Except for atoms in an ever narrower slice around the nodes
of the standing wave produced by the incident laser, though,
the amplitude of these individual fringes all saturate now to
the same value. After averaging over all atoms, the contrast
of the total detected intensity pattern, as illustrated by the
red lines in Fig. 4(b), is reduced. Note that for the sake of
simplicity, the calculation shown in Fig. 4 is done for atoms
distributed over a small region of size of the order of a few
wavelengths, and the envelope of the fringes [as expressed by
the exponential function in Eq. (1)] is thus not visible.

In the discussion of the reduced contrast of CBS, another
important argument has been the role of the inelastically
scattered light, also known as the Mollow triplet. In the single
scattering regime considered here, one can solve the optical
Bloch equations of independent atoms, and then sum their
(independent) scattered field. For each atom, one computes the
field scattered by the oscillating dipole as being proportional
to the optical coherence. In the limit of vanishing saturation,
this allows us to compute the total scattered intensity, as all
light is elastically scattered. For larger saturation however,
the optical coherence saturates and even decreases to zero
for very large values of s. In contrast, the excited state
population saturates to a nonzero value and allows us to
compute the total scattered intensity. The difference between
the light scattering computed from the atomic coherence
or the excited state population corresponds to inelastically
scattered light (sometimes interpreted as being stimulated by
vacuum fluctuations). For atoms separated by more than one
wavelength, emission of such inelastic photons corresponds
to randomly oscillating dipoles and are thus assumed not to
preserve complete phase coherence with the incident laser,
resulting in a reduction of the CBS contrast, in addition to
the nonlinear response. In m-CBS however, the two atoms
contributing to the fringes (i.e., the atom and its mirror image)
have strongly correlated oscillations, which preserve the
relative phase, even when randomly oscillating. Thus, inelastic
scattering is expected to fully contribute to the m-CBS effect,
leading to a lower reduction of the contrast for increasing
saturation, as compared to CBS. As detailed in Appendix B
we have derived a prediction for the m-CBS contrast based on
the elastically scattered light alone [see Eq. (B11)] or based
on the light scattered using the excited state population [see
Eq. (B10)]. The resulting predictions are indicated in Fig. 5 by
“elastic scattering only” and “elastic and inelastic scattering,”
respectively. We note that, for CBS, self-interference of inelas-
tic photons has been identified to lead to a finite contrast even
in the very large saturation limit [19]. We also note that another
different, hitherto unexplained scaling for CBS with rubidium
has been reported in [12] and might be due to a modification
of the internal states of the rubidium atoms [18]. In any case,
our model including elastic and inelastic scattering predicts
m-CBS to be much more robust against saturation than CBS.

A precise measurement of the contrast and its dependence
on the saturation parameter requires a careful data treatment
in order to fully eliminate the undesired additional signal at
the camera created by the reflected m-CBS beam scattered
from all the optical elements. The procedure for extracting
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FIG. 5. Experimental m-CBS contrast (blue triangles), compared
to the normalized CBS one from a strontium cloud [11] (green
circles) and from a rubidium cloud [15] (red stars). The gray
areas for the theoretical predictions {for both the elastic scattering
only, and the elastic and inelastic scattering [see main text and
Eqs. (B11) and (B10) of Appendix B)]} account for the precision
within which our experimental parameters are known: h = 8 ±
0.5 mm and σz = 0.9 ± 0.1 mm. The data are presented as a function
of the saturation parameter s at the center of the probe beam.

the fluorescence signal out of our raw data is detailed in
Appendix A. For a given mirror position [h = 8.0(5) mm]
and cloud size [σz = 0.9(1) mm], we have repeated the
experimental sequence described before for several different
intensities of the m-CBS beam. This allowed us to obtain a
series of curves from which the absolute fringe contrast could
be extracted. Figure 5 confronts the saturation behavior of
the enhancement factor measured in our m-CBS setup and
conventional CBS measured by other groups, as a function of
the saturation parameter s at the center of the m-CBS beam.
Note that we used the same definition for the contrast of CBS as
we did for m-CBS before. The CBS data with strontium atoms
from [11] have been obtained with a probe beam on resonance,
and exhibit almost the maximum CBS contrast of 1 in the
low saturation regime. CBS was also reported with rubidium
atoms which, due to their nontrivial internal structure, exhibit
an overall lower contrast, even at low saturation parameter
[8]. We have chosen, then, to present normalized values of
the contrast for CBS rubidium data. Note that in order to
observe CBS, a high optical thickness (b > 1) is necessary to
reach a significant contrast, whereas in the m-CBS setup, the
maximum contrast is achieved at low optical densities.

V. DISCUSSION AND CONCLUSION

The comparison between CBS and m-CBS data shows a
completely different scaling for the contrast as a function
of the saturation parameter. The m-CBS contrast follows the
same scaling that we would expect from our model including
elastic and inelastic scattering, allowing us to conclude that
all photons contribute to m-CBS, whereas CBS interference
is severely reduced in the presence of inelastic scattering. The
remaining small discrepancy between theory and experiment
might be explained by at least two different effects. The
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first one is the small, but nonzero, optical thickness of our
cloud (b ∼ 0.6 at its center). At small saturation parameters,
the partial reabsorption of the fluorescence light by other
atoms from the cloud will change the relative amplitude of
the paths of Fig. 1 that have otherwise equal amplitude,
thus reducing the overall contrast. This is responsible for
the large discrepancy between experimental data and the
inelastic theoretical curve at small s. On the other hand,
at high saturation parameters the spectral broadening of the
atomic fluorescence (known as the Mollow triplet) may also
reduce the m-CBS contrast, which is not accounted for in our
model. The spectrum of inelastically scattered photons from
a resonant probe beam presents sidebands displaced by ±%0
from the atomic resonance [28]. Since the optical path for
the light scattered by the atoms is different from the optical
path for the light scattered by their mirror images by twice the
distance from the atomic cloud to the real mirror (&l ≈ 1.2 m
in our case), the inelastic broadening will cause a relative
dephasing between both when the spectral width becomes
comparable to, or bigger than, (2π )c/&l ≈ (2π )250 MHz.
For our highest experimental saturation parameter s = 20,
the separation in frequency between the Mollow sidebands is
equal to 2%0 = 2

√
s # ∼ (2π )273 MHz, so the loss of optical

coherence in the interference process is already expected to
affect the m-CBS contrast. The role of the inelastic spectral
broadening in the interference of the light emitted by the atoms
and their mirror images will be studied in a future work.

In conclusion, we have observed coherent backscattering
from a cloud of cold atoms and its mirror image. Investigating
the saturated regime allowed us to identify the important
contribution of inelastic photons to the interference process,
at odds with CBS. Because this coherence effect appears
in completely different regimes as compared to CBS, such
as low optical densities and high saturation parameters, it
can represent a very important tool for probing coherences
in the atomic scattered light where CBS is not observable
anymore. In particular, by an appropriate use of waveplates
and different polarization channels, the m-CBS setup should
allow us to select specific interference paths, which is not
possible for CBS. More generally, the atom and its mirror
image are strongly correlated, which allows this situation to
probe nonclassical light effects [29–33].
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APPENDIX A: DATA ANALYSIS: SUBTRACTION OF THE
LASER LIGHT

As described in the main text, at each experimental run we
obtain two images: The first one is registered while the m-CBS
beam impinges on the atomic cloud, and the second one is
done in the same conditions, but with no atoms captured in our
trap. The m-CBS reflected beam, after traversing all optical
elements, creates an angular light profile on directions close
to its propagation direction. The image registered in absence

of atoms shows exclusively this light pattern. The image with
atoms has this pattern superposed to the atomic fluorescence,
that we want to extract. All the difficulty in extracting it stems
from the fact that when the atoms are also present, the m-CBS
beam is partially absorbed by them, which results in a smaller
signal on the camera when compared to its effect without
absorption. We can thus write the azimuthal-averaged profile
of the light intensity in the presence of atoms as

Ia(θ ) = T Ilas(θ ) + If (θ ), (A1)

where T = e−2b stands for the average transmission of the
cloud after the double passage of the reflected m-CBS beam,
and Ilas and If for, respectively, the intensity of the laser
light in the absence of atoms, and the intensity of the atomic
fluorescence only. From If (θ ), the absolute contrast can thus
be extracted. Out of the fringes’ envelope (or, to a good ap-
proximation, for |θ − θ0| > 2(), and since we are monitoring
the intensity in a narrow angle of 10 mrad, the fluorescence
background is isotropic to an excellent approximation. We can
write then

Ia(θ,|θ − θ0| > 2() = T Ilas(θ ) + Ifluo, (A2)

where Ifluo is the constant incoherent atomic background.
Then the laser light profile is determined by finding the linear
combination of Ia(θ ) (measured with the atoms) and Ilas(θ )
(measured without the atoms) that satisfies Eq. (A2) outside of
the fringes region. An example is provided in Fig. 6(a), where
the measured intensity profile with and without the atoms
is presented, as well as the extracted atomic fluorescence.
Figures 6(b) and 6(c) show the fitted parameters T and Ifluo,
respectively, as a function of the saturation parameter s at the

0.015 0.020 0.025

1500

2000

2500

3000

At
om

ic
 fl

uo
re

sc
en

ce
 (a

rb
. u

ni
ts

)

R
aw

 in
te

ns
ity

 (a
rb

. u
ni

ts
)

Angle to the normal of mirror (rad)

Raw data with atoms
Raw data w/o atoms
Atomic fluorescence

400

600

800

0 5 10 15 20

0.6

0.7

0.8

0.9

T

s at center of probe beam

(b

(a)

)

0 5 10 15 20
0

50
100
150
200
250
300 (c)

I bg
(a

rb
.u

ni
ts

)

s at center of probe beam

FIG. 6. (a) Angular intensity profile in the presence (middle black
curve) and in the absence [top green (gray) curve] of the atomic
cloud. The deduced atomic fluorescence after the laser light weighted
subtraction (see text) If (θ ) [lower red (gray) curve, right vertical axis]
presents a locally isotropic background, plus an interference pattern
at the center. (b) Transmission coefficient T and (c) background
intensity Ifluo deduced from the fit [see Eq. (A2) and the main text], as
a function of the on-axis saturation parameter s. The dashed curves
are calculated with a simple model for the interaction between our
saturated Gaussian laser beam and our Gaussian atomic cloud.
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center of the atomic beam (black circles). The dashed lines
correspond to a simple model for the interaction between our
saturated Gaussian laser beam and our Gaussian shaped atomic
cloud, with the optical density at the center as the only free
parameter. The good agreement gives us confidence in the
fitting procedure for extracting the pure atomic fluorescence
out of our raw data.

APPENDIX B: SINGLE-SCATTERING THEORY

In the following we outline the theoretical approach used to
obtain the radiated intensity pattern in the linear and saturated
regimes. Since we are focusing on the single scattering regime,
it is sufficient to study the behavior of single atoms, and then
sum their radiation independently. Let us thus consider a two-
level atom at position r = (x,y,z) driven by a field of wave
vector k0 = k(0, sin θ0, − cos θ0).

Without loss of generality, we assume that the (virtual)
dielectric mirror lies in the plane z = 0 and choose the initial
polarization along the x̂ axis. The incident field plus its mirror
generate a standing wave in the z axis and a propagating one
in the y direction:

%(r) = %0 cos(kz cos θ0)e−iky sin θ0 . (B1)

Note that we have here assumed high quality mirrors that
possess unity reflection coefficients.

The single-atom equations are then used to determine the
radiation of each atom. Calling σ, σ †, and σ z the atomic
operators, in the semiclassical limit the atomic dynamics is
described by the following set of equations [34]:

dσ̂

dt
=

(
i& − #

2

)
σ̂ + i%(r)σ̂ z, (B2)

dσ̂ z

dt
= 2i[%∗(r)σ̂ − %(r)σ̂ †] − #(σ̂ z + 1), (B3)

with the commutation relations [σ̂ ,σ̂ z] = 2σ̂ ,[σ̂ †,σ̂ ] = σ̂ z,
and σ̂ zσ̂ = −σ̂ .

By imposing the time derivatives to be zero, one obtains the
steady state (ss) expectation values of the optical coherence
and excited population for an atom at position r:

⟨σ̂ ⟩ss(r) = &2 + #2/4
& + i#/2

%(r)
&2 + #2/4 + 2|%(r)|2

, (B4)

⟨σ̂ †σ̂ ⟩ss(r) = |%(r)|2

&2 + #2/4 + 2|%(r)|2
. (B5)

In the far field limit, the field radiated by a single atom in a
direction k = kn̂ and at a distance r reads [35]

Ê(k,t) = −σ̂ (t)
dk2

4πϵ0r
[n̂(x̂ · n̂) − x̂]e−ik·r, (B6)

where d refers to the dipole coupling element and ϵ0 to the
vacuum permittivity.

The measured field in the m-CBS experiment actually
contains two contributions from each atom, since the radiation
of the latter may be reflected or not by the mirror [see Fig. 1,
with processes (i) and (iv) that yield mirror reflection after
scattering]. Thus the total scattered electric field Es in a

direction k comes from the superposition

Es(k) = E(kx,ky,kz) + E(kx,ky, − kz). (B7)

In general, the different components of the field may play an
important role in the intensity profile. However, our experiment
was carried out within observation angles θ ≪ 1, where only
the Ex component is significant. Hence we obtain for the
steady-state fields the following expression:

⟨Es⟩ ∼
√

α⟨σ ⟩ss cos(kz cos θ )e−ikyy−ikxx, (B8)

⟨E†
sEs⟩ ∼ α⟨σ †σ ⟩ss cos2(kz cos θ ), (B9)

where the prefactor α = d2k4/(4π2ϵ2
0r

2) is unimportant to the
determination of the contrast. Equation (B8) corresponds to the
optical coherence, and thus to the elastically scattered light.
On the contrary Eq. (B9) describes the total intensity, that is,
both elastic and inelastic photons [34].

Moving to the m-CBS by a macroscopic cloud of N atoms
with positions rj , the radiation pattern is computed as the sum
of the single-atom intensities:

Itot

I0
= 4s

N

N∑

j=1

cos2(kzj cos θ0) cos2(kzj cos θ )
1 + s cos2(kzj cos θ0)

, (B10)

where we have introduced the saturation parameter s =
2%2

0/(&2 + #2/4) and I0 = cϵ0Nα/8. Equation (B10) relies
on the simplifying hypothesis that all the scattered light (elastic
and inelastic) has the same phase after the scattering, at any
time. More precisely, the coherence length of the light is much
larger than the distance between the (real) mirror and the cloud,
so the inelasticity of the photons may not play a role. We note
that, in the case of a uniform intensity distribution of the laser
beam, the spatial distribution of the atoms in the plane of the
mirror (x,y) does not play any role in this setup.

Nevertheless, if one was to assume that only elastically
scattered light contributes to the fringes pattern, the following
expression for the intensity would be obtained:

Iela

I0
= 4s

N

N∑

j=1

cos2(kzj cos θ0) cos2(kzj cos θ )
[1 + s cos2(kzj cos θ0)]2

. (B11)

Let us first focus on the linear regime, which is that of elastic
scattering (Itot ≈ Iela), and that is obtained by taking s ≪ 1. We
obtain the following expression for the microscopic system:

Iela(θ )
I0

≈ s

N

N∑

j=1

{cos[kzj (cos θ − cos θ0)]

+ cos[kzj (cos θ + cos θ0)]}2. (B12)

At this point it must be noted that a single atom will exhibit
full contrast, with fringes that are not damped. However, in
the many-body case, the superposition of atoms with different
fringes phase (see Fig. 4) results in an interference pattern
with a reduced contrast, over a finite envelope. This sum over
a macroscopic cloud (i.e., much larger than the wavelength)
is well captured by substituting the sum over the atoms
by an integral over the typical atomic distribution

∑N
j=1 →∫

drρ(r). The first term in the sum in Eq. (B12) provides a
coherent contribution in the θ = θ0 direction, whatever the
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position z of the atom, whereas the second term averages to 0.
The decay of the envelope is then provided by the finite size of
the cloud. For a Gaussian distribution such as those produced
in our trap, one obtains Eq. (1). That equation predicts an
alternation of constructive and destructive interferences with
period π/(khθ0), which leads to the observed fringes, see
Fig. 7.

Remark that the elastic contribution Eq. (B11) decreases
as 1/s for increasing saturation parameter s, whereas the total
radiation converges to

lim
s→∞

Itot(θ )
I0

= 4
N

N∑

j=1

cos2(kzj cos θ ). (B13)

Integrating over a Gaussian distribution as before, in the
small angle and large cloud limits, we obtain Itot = 2I0, i.e.,
the fluorescence converges to a finite value for very large
saturation parameters. Thus the ratio between the elastically
scattered intensity to the total one scales as 1/s, which explains
the fast decay of the contrast of the “elastic” theory.

In the saturated regime, atoms that are not close to a zero
of the standing wave saturate. As s increases, the proportion
of scatterers that contribute to the grating decreases as 1/

√
s,
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FIG. 7. (a) Intensity pattern in the nonlinear regime [Eq. (B10)],
with s = 20. The intensity pattern in the linear regime is virtually
identical, up to a scaling factor. (b) Azimuthal average of the intensity
pattern normalized to the background intensity, in the linear (s =
0.01, blue continuous line) and nonlinear (s = 20, red dashed line)
regimes, showing the fringes profile. The figures can be compared to
the measurement presented in Fig. 2 of the main text.

whereas the others produce an isotropic fluorescence radiation
pattern. This explains the rather slow decay of the contrast in
the “inelastic theory.” In the present work, the intensity pattern
for large values of s was computed numerically using the
microscopic formula (B10), for random Gaussian distributions
of one hundred thousands of atoms (see Fig. 5).
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4 OPTICAL BINDING WITH COLD ATOMS

4.1 Same text of the paper preview in letter format

The interaction of light with atoms, from the microscopic to the macroscopic scale,
is one of the most fundamental mechanisms in nature. After the advent of the laser,
new techniques were developed to manipulate precisely objects of very di�erent sizes
with light, up to the atomic scale. In this context, two optical forces are of fundamental
importance: The radiation pressure force, which pushes the particles in the direction of the
light propagation,60 and the dipole force, which tends to trap them into intensity extrema,
as for example in optical lattices.61 Beyond single-particle physics, one must consider that
the multiple scattering of light plays an important role in modifying these forces. For
instance, the radiation pressure force compresses optically thick atomic clouds, as a result
of intensity attenuation in the propagation direction,62 whereas the dipole force can be
self-induced as plane-wave waves su�er di�raction on the scatterers, for example on matter
waves.63

In a many-scatterer system, multiple scattering results in mutual optical forces
between all of them: These forces in turn may promote long-range spatial reorganization of
the system in regions of the order of the light wavelength, an e�ect called Optical Binding
(OB).64 Since the first OB demonstrations,65,66 experiments have been realized with pairs
of dielectric microsized-spheres interacting with intense light fields within dissipative
fluids, the bistability properties of one-dimensional configurations were studied67 and
optically restoring forces were demonstrated.68 Theoretical approaches have focused on the
one-69 (1D) and two-dimensional70,71 (2D) stability of spheres arrays, using numerically
approaches. In particular, the existence of a friction threshold above which bounded motion
occurs was discussed in Ref.72

In this letter, we demonstrate theoretically the existence of optically bounded
motion for a pair of cold atoms in the absence of non-radiative friction. The two atoms
are confined in 2D by counterpropagating lasers, and the resulting undamped angular
momentum becomes a conserved quantity. This system allows for the study of rotating
bound states rotation, and their dynamical stability properties. Thus, we identify an
unbound-bound phase transition as the pump strength and laser-atomic transition detuning
are tuned, which has the particularities to be asymmetric with respect to the atomic
transition: Red-detuned states exhibit pure OB, whereas blue-detuned one present only
metastable OB, with a stability time that grows exponentially with the detuning.

Our system is composed of two non-relativistic atoms of mass m which interact
with a classical radiation field. Using the the dipole approximation H = ≠ q

2

j=1

D
j

· E (r
j

),
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Figure 3 – Two atoms evolve in the z = 0 plane, trapped in 2D by counter-propagating
plane-waves, with wave vector orthogonal to that plane. The light exchange
between the atoms induces the 2D two-body optically coupled dynamics.

Source: By the author.

with D
j

the dipole operator and E (r
j

) the electric field calculated at the center-of-mass
r

j

of the atoms. The Hamiltonian H is valid when the light wavelength is much larger
than the atom size, so the center-of-mass motion of the atoms can be described rightly
by classical trajectories. Considering the scalar linear optics regime,33 the Heisenberg
equations of motion for the dipoles leads to the classical analogue

—̇
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A

i� ≠ �
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B
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j

—
l

È
, l ”= j, (4.2)

which can be also derived from the standard Maxwell equations.26,27 Two counter-
propagating plane waves, of Rabi frequency � and wavenumber k, drive two-level transitions,
of linewidth � and detuning � between the laser frequency and the atomic transition. As
these lasers trap the two atoms in a field maximum plane (z = 0), which is perpendicular
to the light propagation, the laser cooling process plays no role in the z direction (see
Fig.3). Therefore, a frictionless 2D motion emerges, where the only dissipation present is
the spontaneous emission from the dipoles into the vacuum modes (see Eq.(4.1)). Note
that while the dipoles probability amplitude —

j

respond linearly to the light fields, their
coupling with the centers-of-mass r

j

is responsible for the nonlinearity of Eqs.(4.1)–(4.2).

The light-mediated long-range interaction between the atoms is given, in the scalar
light approximation, by the Green function

G (|r
j

≠ r
l

|) = eik|r
j

≠r
l

|

ik |r
j

≠ r
l

| , (4.3)
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which is obtained from the Markovian integration over the vacuum modes of the electro-
magnetic field.33 The gradient of the modulus of G is responsible for the radial dipolar force
between the atoms, whereas the gradient of its phase gives rise to the radiation pressure
force.60 This coupled dipole model, has been shown to provide an accurate description
of many phenomena based on cooperative light scattering, such as the observation of
a cooperative radiation pressure force,28,29 superradiance30 and subradiance15 in dilute
atomic clouds, linewidth broadening and cooperative frequency shifts.31,79

Central force problems, as the one described by Eqs.(4.1)-(4.2), are best studied in
the relative coordinate frame, so we define the average (and di�erential) positions and
dipoles of the atoms (see Supp. Mat.). After a transient of order 1/�, the two atomic
dipoles synchronize and their relative position r = r

1

≠ r
2

gets coupled only to the average
dipole, i.e., the center-of-mass motion and the dipoles di�erence play no role in this setup.
The angular momentum L = mrv‹ of the system is a conserved quantity, with v‹ the
magnitude of the velocity perpendicular to the inter-particle separation r = rr̂. This is a
fundamental di�erence with other OB systems where the angular momentum is quickly
driven to zero by friction. Note that the stochastic heating due to the random atomic
recoil which comes from spontaneous emission recoils is here neglected.

Bound states (BS) are found around the stable equilibrium points of the system.
Here they are given by the zeros of the equation

¸2

k3r3

= �2

�2
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kr
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2
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2
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kr

2
2

+
1
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kr

2
2

, (4.4)

as derived in the supplemental material. Note that Eq.(4.4) depends on the dimensionless
angular momentum ¸ © Lk/

Ô
8�m~, pump strength �/� and detuning ” © �/�, and

it includes both stable and unstable equilibrium points. For the particular case ¸ = 0,
the equilibrium points are given by the simplified condition tan kr = ≠1/kr which does
not depend on the light matter coupling, only on the atoms mutual distance. The details
of the light-matter interaction will however come into play when the stability of these
equilibrium points is considered.

As pointed out in Ref.,72 linear stability may not be su�cient to provide a phase
diagram with BS. We here instead choose to study its stability by integrating numerically
the dynamics, starting with a pair of atoms with initial velocities, and moving around
the equilibrium separation r ¥ ⁄. We first focus on states without angular momentum,
so the atoms are chosen with opposite radial velocities vÎ, parallel to the vector distance
between the atoms. The escape time · , at which the atoms start to evolve as free-particles,
is computed by integrating the 1D dynamics.

Fig.4(a) presents the stability diagram of the r ¥ ⁄ equilibrium point. In the lower
part of the diagram (low pump strength), free-particle states are always observed after
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Figure 4 – (a) Stability diagram around the equilibrium point r ¥ ⁄ for the 1D dynamics
with ¸ = 0. Free-particle states are found for low pump intensity, over the black
region, BS on the red-detuned side (light blue area) and metastable states on
the blue-detuned side (color gradient). (b) Typical dynamics of of free-particle,
bounded and metastable states. Simulations realized with particles with an
initial temperature T = 1µK, where the conversion between temperature and
velocity was realized using the 87Rb atom mass m = 1.419 ◊ 10≠25 Kg.

Source: By the author.

a short transient · ¥ 0.1 ms, which means that the optical forces are unable to bind
the atoms (see trajectory for ” = ≠2.5 in Fig.4(b)). For ” smaller than a phase shift ”

0

(discussed later), a free-particle to bounded motion phase transition occurs as the pumping
strength �/� is increased. In the stable phase (BS), the atoms mutual distance r converges
oscillating to r ¥ ⁄, as displayed in the circles curve of Fig.4(b). We verified that these
BS, characterized by an infinite · , occur around the equilibrium points r = n⁄, with
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n œ N. The unstable equilibrium points are found around (n + 1/2)⁄ and contains only
free-particle states (see supp. mat.).

For ” > ”
0

, a free-particle to BS phase transition occurs as well, symmetric to the
previous one (see Fig.4(a)). Yet the BSs appear to be only metastable, with the pair of
atoms which separates on large time scales (see Fig.4(b)). The binding time is indeed
observed to grow exponentially with the normalized detuning ”, reaching milliseconds for
a few units of � already. This is di�erent from the previous works on dielectric spheres,
which have reported on detuning-symmetric situations.64

Studying the conditions of existence of BS, we identified that the transition from
the free-particle to BS is characterized by the following scaling law (see Suppl. Mat. for
more details)

T
c

T
rec

¥ –
�2

�—

1
(kr)0.9

, (4.5)

with – ¥ 58.997 ± 2.3%, — ¥ 2.004 ± 1.1% and T
rec

= ~2k2/2mk
B

the recoil temperature.
This law represents a cooperative correction to the optical potential barrier which can be
estimated for large detunings, as done for dielectrics.65 Note that in the present case, the
temperature scales as 1/�2, rather than 1/�4 as for dielectrics: This important di�erence
originates in the fact that two-atom OB relies on double scattering instead of the usual
dipole force.80 Note that here, since we are considering at first a zero angular motion
dynamics, the temperature is associated to the parallel (radial) velocity of the two atoms
(k

B

T = mÈv2

ÎÍ), where the 87Rb atom mass was used.

The free-particle to BS transition in Fig.4(a) is approximately delimited by a shift
”

0

, which is composed of two terms. First, considering that the atoms separation is almost
constant for a given BS (r ¥ ⁄ in Fig.4(b), for example), the state composed of two
synchronized dipoles has an energy cos(kr)/2kr (see supp. mat.). The second contribution
comes from the average Doppler shift

”
0

¥ ≠cos kr

2kr
≠ kvÎ (·)

� . (4.6)

The first term of Eq. (4.6) represents a cooperative energy shift that depends on the atoms
separation r and, the second term, is the Doppler shift due to the atoms free-particle
separation velocity vÎ (·). Therefore, this shift precludes BS from the resonance line when
the angular momentum is absent.

The frictionless nature of the cold atom system introduces a new degree of freedom.
As mentioned earlier, the angular momentum l is conserved during the dynamics, which
gives rise to rotating BS. Examples of such states are shown in Fig.5: The pair of atoms
can reach a rotating BS with fixed inter-particle distance on resonance (see Figs.5 (a) and
(b)), but it may also support stable oscillations along the two-atom axis far from resonance
(see Figs.5 (c) and (d)), analogue to a molecule vibrational mode. As in the 1D case, the
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Figure 5 – Rotating states for the pair of atoms for (a–b) Fixed inter-particle distance,
(c–d) Vibrational mode and (e–f) Metastable state. As the orbits of both atoms
coincides in (a), only a single orbit appears displayed. Simulations realized with
¸ = 0.13, �/� = 0.25 and T = 1µK, where the 87Rb atom mass was adopted.

Source: By the author.

atoms may remain coupled for long times, before eventually separating (see Figs.5 (e)
and (f)). As can be seen in Eq.(4.4), for ¸ ”= 0 the stationary points are circular orbits in
the plane z = 0 instead of fixed points, which now depend on all control parameters (see
Eq. (4.4)).

High values of angular momentum ¸ strongly modifies the equilibrium point land-
scape, suppressing the low-r equilibrium points (see Suppl. Mat.). Considering as before
the r ¥ ⁄ equilibrium point, with an initial temperature T = 1µK which is now associated
to a transverse initial velocity, we obtain ¸ ¥ 0.13. This value presents an equilibrium
landscape mostly unchanged, although the stability of these points may be altered, so we
proceed on comparing the associated phase diagram to that of the l = 0 case.

Rotating BS are characterized by both radial vÎ and tangential v‹ velocities, the
latter being associated to the conserved angular momentum. For simplicity, we focus
on initial states of atoms with purely tangential and opposite velocities. In other words,



4.1 Same text of the paper preview in letter format 63

Figure 6 – Stability diagram around the equilibrium point r ¥ ⁄ for ¸ = 0.13. Free-particle
states are found for low pump intensity (black region), BS on the red-detuned
side (light blue) and metastable states in the blue-detuned side, where the color
gradient denotes the state lifetime. Simulations realized with particles with an
initial temperature T = 1µK, where the conversion between temperature and
velocity was realized using the Rb atom mass.

Source: By the author.

no initial radial velocity is considered, although it may appear dynamically. A phase
diagram for the r ¥ ⁄ and ¸ = 0.13 states is presented in Fig.6, where the escape time ·

has been computed following the same procedure as before. Let us first remark that the
purely-bounded to metastable transition is not delimited by a sharp transition anymore,
oppositely to the ¸ = 0 case. For ¸ ”= 0, this energy shift varies nonlinearly according to
the field pump strength �/�, allowing dynamically stable BS for ” > ”

0

, including the
resonant line. The stable-metastable phase transition for ¸ ”= 0 covers a larger part of the
phase diagram, so the introduction of an angular momentum in the system allows to reach
BS for ranges of parameters where they do not exist at ¸ = 0.

Investigating the long-term stability of states with di�erent angular momentum and
inter–particle distance, a similar scaling law to that representing the ¸ = 0 (see Eq.(4.5))
can be obtained,

T
c

T
rec

¥ –
�2

�—

1
(kr)0.2

, (4.7)

with – ¥ 30.687 ± 1.9% and — ¥ 2.003 ± 0.8%, where the temperature is now related to
the tangential velocity as Tk

B

= mÈv2

‹Í. Interestingly, Eq.(4.7) shows that the stability of
rotating BS depends little on the inter–particle distance. Moreover, when one compares
the diagrams of the ¸ = 0 and ¸ ”= 0 cases, it can be clearly noted that the escape time
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is significantly larger for rotating BSs, so angular momentum appears to promote the
stability of BSs.

In conclusion, we have shown that pairs of cold atoms can exhibit optically BS
in vacuum. The absence of non-radiative damping in the motion allows for a new class
of dynamically BS – a phenomenon not present in other OB setups. Furthermore, while
red-detuned light presents OB above a given threshold, blue-detuned light presents only
metastable states, whose lifetime increases with both detuning and angular momentum.
While this demonstration of optical binding for a pair of particles paves the way for the
study of this phenomenon on larger atomic systems, the generalization of these peculiar
stability properties will be an important issue to understand the stability of large clouds.

4.2 Supplemental Material

4.2.1 E�ective two-dimensional dynamics and cooperative shift

Eqs. (4.1)-(4.2) of the main text can be rewritten in a more convenient form through
the following variables transformation:

b = —
1

≠ —
2

, (S-1)

B = —
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+ —
2

2 , (S-2)
r = r

1

≠ r
2
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R = r
1

+ r
2

2 . (S-4)

where B and b are the average and di�erential dipoles, and R and r the average and
di�erential positions. As the motion is restricted to two dimensions, we choose the polar
coordinates parametrization r = r (cos „, sin „), which yields the following dynamical
equations:
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L̇ = d

dt

1
mr2

.

„
2

= 0, (S-8)

where the center-of-mass dynamics of the two-atom system has naturally decoupled from
all equations. The cooperative shift ≠ cos kr/2kr appears clearly in Eq.(S-6), by choosing
as zero the imaginary part of the brackets.
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4.2.2 Derivation of the equilibrium condition Eq.(4)

As there is no source term Eq.(S-5), the relative dipoles coordinate b vanishes on a
time scale of the order of 1/�, which is very fast compared to the atomic motion. Therefore,
the atoms can be considered always synchronized and the inter-atomic dynamics r couples
only to the average dipole B. It is thus possible to write

B = —
1

= —
2

© —ei‰, (S-9)

with — Ø 0 and ‰ œ R. Then, the set of dynamical equations reduces to:
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The equilibrium points of these equations will be given by setting —̇ = ‰̇ = 0:
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which, combined with r̈ = 0, gives the equilibrium condition for the interatomic separations,
Eq.(4.4) in the main text. If one redefines Eq.(4.4) as
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the equilibrium points are obtained from the zeros of F (see Fig.7). In Fig.7(a), observe
that as the angular momentum increases, the equilibrium points with the shortest distances
become more shallow, before disappearing.

4.2.3 Unstable equilibrium point

In Fig.8, we present a complementary example of an unstable equilibrium separation
around r ¥ 3⁄/2. It contains always free-particle states whose escape time converge to
· ¥ 10≠1.2 ms ¥ 0.06 ms as the detuning increases. The diagram with angular momentum
converges faster to this maximum · with detuning than the unidimensional case and no
phase transitions were found.

4.2.4 Collapse of the temperature threshold

The unbounded-bounded motion phase transition, which is symmetrical to the
unstable-metastable one, satisfies the scaling laws of the main text. In order to ground it,
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Figure 7 – Two-atoms equilibrium distances (a) for di�erent ¸ and (b) di�erent detunings.

Source: By the author.

we display in Figs.9 and 10 the linear collapse of several curves for both ¸ = 0 and ¸ ”= 0
cases.
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Figure 8 – Stability diagrams for the equilibrium point around r ¥ 3⁄/2.

Source: By the author.

Figure 9 – Collapse of the phase transition slope from free-particle to bounded states for
one-dimensional motion (¸ = 0).

Source: By the author.



68 Chapter 4 Optical binding with cold atoms

Figure 10 – Collapse of the phase transition slope from free-particle to bounded states
for two-dimensional motion (¸ ”= 0).

Source: By the author.
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5 GENERAL CONCLUSIONS AND FUTURE WORKS

We here draw general conclusions and future directions which naturally originate
from the results of this Ph.D.. More specific conclusions regarding each topic can be found
in the papers of chapter 3 and chapter 4.

In this thesis, we have explored several collective properties of light scattering by
disordered cold atomic clouds. In particular, two theoretical predictions have been realized,
which are strongly connected to light scattering experiments in São Carlos: the atomic
lighthouse e�ect and the interference fringes of the mirror assisted coherent backscattering.
The former phenomenon requires setting up a gradient of magnetic field, which is a
common tool in cold atom experiments, used for example for manipulating atoms. The
mCBS measurements have already been published and represents a new tool to investigate
coherent interference phenomena in disordered atomic clouds, even in the saturated regime.
This second line of research is being continued by exploiting the dispersion of light when it
propagates over large distances. It allows to obtain di�erent fringe pattern for the di�erent
spectral components of the atomic radiation.

Anderson localization studies were performed in two dimensions, where we show
that the localization length of light is independent of subradiant decay rates. Such result
was possible because the 2D scattering model allows for an accurate computation of the
localization length, a very challenging task in 3D. The localization of light in 3D is still
an open question, and new methodologies must be pursued at least to understand more
clearly why near-field terms suppress localized decay modes. Our work in 2D point to some
interesting directions which may facilitate the investigations in 3D. In particular, it was
demonstrated that the 2D model is a powerful platform to study the role of polarization
e�ects in the absence of localization transition.

Finally, optical binding with a pair of cold atoms was obtained in the deterministic
case, when random spontaneous emission recoils are not taken into account. Although our
approach consider only two-atom dynamics, it represents an important first step toward a
many-body approach with stochastic quantum simulations.

Marcelo Martinelli
Way to go!
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